81 research outputs found

    Novel Protein Kinase Signaling Systems Regulating Lifespan Identified by Small Molecule Library Screening Using Drosophila

    Get PDF
    Protein kinase signaling cascades control most aspects of cellular function. The ATP binding domains of signaling protein kinases are the targets of most available inhibitors. These domains are highly conserved from mammals to flies. Herein we describe screening of a library of small molecule inhibitors of protein kinases for their ability to increase Drosophila lifespan. We developed an assay system which allowed screening using the small amounts of materials normally present in commercial chemical libraries. The studies identified 17 inhibitors, the majority of which targeted tyrosine kinases associated with the epidermal growth factor receptor (EGFR), platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF) receptors, G-protein coupled receptor (GPCR), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), the insulin and insulin-like growth factor (IGFI) receptors. Comparison of the protein kinase signaling effects of the inhibitors in vitro defined a consensus intracellular signaling profile which included decreased signaling by p38MAPK (p38), c-Jun N-terminal kinase (JNK) and protein kinase C (PKC). If confirmed, many of these kinases will be novel additions to the signaling cascades known to regulate metazoan longevity

    Statin Treatment Increases Lifespan and Improves Cardiac Health in Drosophila by Decreasing Specific Protein Prenylation

    Get PDF
    Statins such as simvastatin are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors and standard therapy for the prevention and treatment of cardiovascular diseases in mammals. Here we show that simvastatin significantly increased the mean and maximum lifespan of Drosophila melanogaster (Drosophila) and enhanced cardiac function in aging flies by significantly reducing heart arrhythmias and increasing the contraction proportion of the contraction/relaxation cycle. These results appeared independent of internal changes in ubiquinone or juvenile hormone levels. Rather, they appeared to involve decreased protein prenylation. Simvastatin decreased the membrane association (prenylation) of specific small Ras GTPases in mice. Both farnesyl (L744832) and type 1 geranylgeranyl transferase (GGTI-298) inhibitors increased Drosophila lifespan. These data are the most direct evidence to date that decreased protein prenylation can increase cardiac health and lifespan in any metazoan species, and may explain the pleiotropic (non-cholesterol related) health effects of statins

    N-Octanoyl-Dopamine inhibits cytokine production in activated T-cells and diminishes MHC-class-II expression as well as adhesion molecules in IFN gamma-stimulated endothelial cells

    Get PDF
    IFN gamma enhances allograft immunogenicity and facilitates T-cell mediated rejection. This may cause interstitial fibrosis and tubular atrophy (IFTA), contributing to chronic allograft loss. We assessed if inhibition of T-cell activation by N-octanoyl dopamine (NOD) impairs adherence of activated T-cells to endothelial cells and the ability of activated T-cells to produce IFN gamma. We also assessed if NOD affects IFN gamma mediated gene expression in endothelial cells. The presence of NOD during T-cell activation significantly blunted their adhesion to unstimulated and cytokine stimulated HUVEC. Supernatants of these T-cells displayed significantly lower concentrations of TNF alpha and IFN gamma and were less capable to facilitate T-cell adhesion. In the presence of NOD VLA-4 (CD49d/CD29) and LFA-1 (CD11a/CD18) expression on T-cells was reduced. NOD treatment of IFN gamma stimulated HUVEC reduced the expression of MHC class II transactivator (CIITA), of MHC class II and its associated invariant chain CD74. Since IFTA is associated with T-cell mediated rejection and IFN gamma to a large extent regulates immunogenicity of allografts, our current data suggest a potential clinical use of NOD in the treatment of transplant recipients. Further in vivo studies are warranted to confirm these in vitro findings and to assess the benefit of NOD on IFTA in clinically relevant models

    Specific prebiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults: results of the “COPA” pilot randomized trial

    Get PDF
    Intestinal mucosal immune system is an early target for human immunodeficiency virus type 1 (HIV-1) infection, resulting in CD4+ T-cell depletion, deterioration of gut lining, and fecal microbiota composition. We evaluated the effects of a prebiotic oligosaccharide mixture in highly active antiretroviral therapy (HAART)-naive HIV-1-infected adults. In a pilot double-blind, randomized, placebo-controlled study, 57 HAART-naive HIV-1-infected patients received a unique oligosaccharide mixture (15 or 30 g short chain galactooligosaccharides/long chain fructooligosaccharides/pectin hydrolysate-derived acidic oligosaccharides (scGOS/lcFOS/pAOS) daily) or a placebo for 12 weeks. Microbiota composition improved significantly with increased bifidobacteria, decreased Clostridium coccoides/Eubacterium rectale cluster, and decreased pathogenic Clostridium lituseburense/Clostridium histolyticum group levels upon prebiotic supplementation. In addition, a reduction of soluble CD14 (sCD14), activated CD4+/CD25+ T cells, and significantly increased natural killer (NK) cell activity when compared with control group were seen in the treatment group. The results of this pilot trial highly significantly show that dietary supplementation with a prebiotic oligosaccharide mixture results in improvement of the gut microbiota composition, reduction of sCD14, CD4+ T-cell activation (CD25), and improved NK cell activity in HAART-naive HIV-infected individuals

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    The desmosome and pemphigus

    Get PDF
    Desmosomes are patch-like intercellular adhering junctions (“maculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required

    Diversity, Ecology and Biogeochemistry of Cyst-Forming Acantharia (Radiolaria) in the Oceans

    Get PDF
    Marine planktonic organisms that undertake active vertical migrations over their life cycle are important contributors to downward particle flux in the oceans. Acantharia, globally distributed heterotrophic protists that are unique in building skeletons of celestite (strontium sulfate), can produce reproductive cysts covered by a heavy mineral shell that sink rapidly from surface to deep waters. We combined phylogenetic and biogeochemical analyses to explore the ecological and biogeochemical significance of this reproductive strategy. Phylogenetic analysis of the 18S and 28S rRNA genes of different cyst morphotypes collected in different oceans indicated that cyst-forming Acantharia belong to three early diverging and essentially non symbiotic clades from the orders Chaunacanthida and Holacanthida. Environmental high-throughput V9 tag sequences and clone libraries of the 18S rRNA showed that the three clades are widely distributed in the Indian, Atlantic and Pacific Oceans at different latitudes, but appear prominent in regions of higher primary productivity. Moreover, sequences of cyst-forming Acantharia were distributed evenly in both the photic and mesopelagic zone, a vertical distribution that we attribute to their life cycle where flagellated swarmers are released in deep waters from sinking cysts. Bathypelagic sediment traps in the subantarctic and oligotrophic subtropical Atlantic Ocean showed that downward flux of Acantharia was only large at high-latitudes and during a phytoplankton bloom. Their contribution to the total monthly particulate organic matter flux can represent up to 3%. High organic carbon export in cold waters would be a putative nutritional source for juveniles ascending in the water column. This study improves our understanding of the life cycle and biogeochemical contribution of Acantharia, and brings new insights into a remarkable reproductive strategy in marine protists
    corecore