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Abstract Autoreactive T cells specific for islet autoantigens
develop in type 1 diabetes (T1D) by escaping central as well
as peripheral tolerance. The current paradigm for development
of islet autoimmunity is just beginning to include the contri-
bution of posttranslationally modified (PTM) islet
autoantigens, for which the immune system may be ignorant
rather than tolerant. As a result, PTM is the latest promising
lead in the quest to understand how the break in peripheral
tolerance occurs in T1D. However, it is not completely clear
how, where, or when these modifications take place.
Currently, only a few PTM antigens have been well-thought-
out or identified in T1D, and methods for identifying and
characterizing new PTM antigens are rapidly improving.
This review will address both reported and potential new
sources of modified islet autoantigens and discuss how islet
neo-autoantigen generation may contribute to the develop-
ment and progression of T1D.
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Introduction

Type 1 diabetes (T1D) is characterized as an autoimmune
disease resulting from the loss of immune tolerance to beta
cell autoantigens. However, if posttranslational modification
(PTM) of beta cell proteins generates neo-autoantigens that
the immune system is ignorant to, as the antigens may not
have been present during thymic selection, then T1D could
be a result of the immune system responding to essentially
Bforeign^ proteins created by PTM. This may explain some
instances of T1D development but probably not all, as a di-
verse immunological heterogeneity exists between patients in
terms of immunogenetic background, islet autoantibodies, and
islet autoreactive T cells [1]. This heterogeneity has important
implications for guiding therapy, as the degree of cellular islet
autoimmunity predicted the clinical outcome of both hemato-
poietic stem cell therapy and islet transplantation [2–4]. In
these studies, the patient’s immune signature correlated with
differential responsiveness to immune therapy, underscoring
the importance of deciphering disease heterogeneity between
patients. Exploring PTM has revealed new immunologically
and clinically relevant neo-epitopes as targets for autoreactive
T cells, has increased our understanding of disease heteroge-
neity, and may allow for more personalized therapeutic inter-
ventions [5••, 6].

The human proteome plays a role in shaping proper im-
mune discrimination during thymic selection. Whereas the
genome comprises 20–25,000 genes [7], the proteome is esti-
mated to encompass over one million proteins [8]. Changes at
the mRNA and transcriptional level increase the size of the
transcriptome in relation to the genome [9, 10]; following this
expansion, the many different PTMs increase the complexity
of the human proteome relative to the genome and the tran-
scriptome. PTM is a broad term encompassing many natural
posttranslational processes within cells and tissues. These
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include covalent attachment of small functional molecules
(e.g., ubiquitination and phosphorylation), or chemical modi-
fications of amino acids within proteins. Nature supplies 20
amino acids as the building blocks of human proteins, and this
number increases to more than 140 building blocks after ac-
counting for PTM through enzymatic modifications (e.g.,
deamidation, citrullination, glycosylation) and nonenzymatic
(spontaneous) modif ica t ions (e .g . , methyla t ion,
carbamylation, oxidation, nitration). In T1D, both citrullinated
and deamidated autoantigens have been identified (Table 1),
indicating a role for peptidylarginine deiminases (PADs) and
tissue transglutaminase (tTG), respectively, in the generation
of islet neo-autoantigens.

The involvement of PTM in the pathogenesis of T1D will
be discussed by looking at where the cells and tissues regulate
protein modification, how the modifications occur, and when
during the disease process the modifications are important.
This will identify avenues that the T1D community can follow
in order to better understand PTM and start developing ap-
proaches for disease monitoring and therapeutic intervention.

Where: Dialogue Between Beta Cells
and the Immune System

A direct association between beta cell destruction was
established with the discovery of islet autoreactive CD8 T
cells in insulitic lesions from patients with T1D [11]. Islets
from patients with T1D also had hyper-expression of HLA
class I molecules, indicating that during insulitis, beta cells

could be active in their own demise by becoming easier targets
for pathogenic CD8 T cells [11]. Beta cells could be passive
victims to autoimmune destruction (BHomicide^ model) and/
or actively contribute to their own demise (BSuicide^ model),
as was first conceived by Bottazzo [12]. Supporting the Bbeta
cell suicide^ model is data showing production of the chemo-
kine CXCL10 within distressed islets and expression of the
cognate receptor CXCR3 on CD8 Tcells in insulitic lesions in
patients with T1D, indicating that the pancreas can actively
recruit pathogenic CD8 T cells and communicate with the
immune system [13].

When considering the impact of PTM on the development
and progression of T1D, it is important to consider the loca-
tion and local activity of the modifying enzymes involved.
PTM in celiac disease (CD) occurs in the intestinal lumen at
the site where key substrates, such as gliadin peptides, are
concentrated. Tissue transglutaminase (tTG) activity is in-
creased in the mucosal epithelium of patients with CD [14],
and the ensuing cross talk between immune cells in the lamina
propria during CD has been well studied [15]. In human islets,
tTG is active during insulin secretion, acting on cytosolic,
mitochondrial, and nuclear substrates [16]. Therefore, islets
have the potential to generate neo-autoantigens through tTG-
mediated deamidation. We recently confirmed that human is-
lets generate neo-autoantigens; an inflammatory stimulus re-
sulted in deamidation of the proinsulin C-peptide [17•]. Tcells
reactive to this deamidated C-peptide were found in patients
with T1D [5••], linking neo-antigen generation in human islets
with the induction of autoreactive T cells. tTG is also present
in cells of the myeloid lineage [18]. Direct vesicular transfer of

Table 1 Posttranslational modifications in human autoimmune diseases

Type of
modification

Antigen(s) Relevance in autoimmune
disease

References

Citrullination
Methylation
Palmitoylation
Acetylation
Sulfation

Myelin basis protein (MBP),
myelin proteolipid protein
(PLP), P-selectin glycoprotein
ligand 1 (PSGL-1)

Multiple sclerosis [62, 63]
[64, 65]
[66, 67]
[68, 69]
[70]

Deamidation Gluten (gliadin) Celiac disease [71, 72]

Citrullination
Carbamylation

Glycosylation

Vimentin, vinculin, histones,
apolipoproteins, fibrinogen, Ig

Rheumatoid arthritis [73, 74]
[75, 76]
[75]

Deamidation
Disulfide bridges

Citrullination
Oxidative

modification

Preproinsulin, GAD65,
collagen type II

Type 1 diabetes [5••]
[6]
[29]
[46, 47, 48•, 77]

Oxidative
modification

Sialylation

Beta2-glycoprotein 1 Antiphospholipid syndrome [78, 79]
[80]

Phosphorylation
Deimination

Cytoplasmic proteins (e.g. Ro/SSA,
La/SSB, nucleosomal DNA,
histones)

Systemic Lupus Erythematosus [81]
[82]
[83]
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islet material to resident APC has been demonstrated in both
mice and humans, suggesting that islet proteins can be
deamidated by tTG during antigen processing within the
APC [19]. Recent results extend these findings to T1D, as
dendritic cells (DC) pulsed with native islet antigen 2 (IA-2)
naturally processed and presented deamidated peptides from
IA-2 [17•]. Thus, it appears that tTG activity in both islets and
DC contributes to islet neo-epitope formation. Besides the
diverse subcellular localization of tTG, it is also a secreted,
extracellular protein important for cell-extracellular matrix in-
teractions [20, 21]. However, the contribution of extracellular
tTG to the deamidation of islet proteins within the pancreas
has not yet been investigated. PAD expression and activity
have not been investigated in human islets, but antigen pre-
senting cells (APC), such as human monocytes and macro-
phages, contain both PAD2 and PAD4 transcripts and active
PAD2 and PAD4, indicating that cells of the monocytic line-
age have the potential to citrullinate self-proteins [22]. Mouse
APC from both splenic and thymic tissue can citrullinate and
present citrullinated peptides to activate epitope-specific CD4
T cells, a process requiring autophagy [23]. While not conclu-
sive, these studies indicate that islet protein citrullination may
occur in APC within human islets or in the draining lymph
nodes.

How: Mechanisms of Posttranslational Modification
in Type 1 Diabetes

Data on PTM of islet autoantigens is emerging (Table 1), and
the crossover with other autoimmune diseases indicates that
PTM may have clinical relevance for T1D. HLA binding is a
key factor in the selection of processed (neo)epitopes present-
ed by APC and beta cells. To bind HLA molecules, processed
peptides must conform to specific HLA binding motifs. In
T1D, different HLA molecules associated with disease have
distinct peptide-binding preferences [24, 25]. Differences in
HLA peptide-binding motifs and the ability to generate stable
peptide-HLA complexes likely explain the striking differ-
ences in the genetic risk associated with different HLA geno-
types. For example, the peptide binding repertoires of the mo-
lecular variants of the high-risk HLA-DQ2, DQ8, and DQ2/8
genotypes showed strong preferences for binding peptides
with negatively charged residues [26]. As such, the genetic
association of T1D with HLA-DQ can potentially be ex-
plained by the deamidating function of tTG, which creates
more negatively charged peptides that can be exceptionally
potent HLA-DQ binders. Indeed, deamidation of a naturally
processed and presented PPI peptide enhanced binding to
HLA-DQ2/8 molecules and specifically to DQ8trans, a het-
erodimeric HLA molecule composed of the DQ2 alpha and
DQ8 beta chains, and patient Tcell responses (interferon gam-
ma) were increased after stimulation with the deamidated PPI

peptide [5••]. Deamidation of chromogranin A, a recently dis-
covered antigen in T1D, also increased T cell interferon gam-
ma in patients with T1D [27]. Interestingly, the HLA-
DQ8trans molecule is also implicated in CD pathogenesis,
as demonstrated by T cell cross-reactivity between HLA-
DQ8 and DQ8trans [28]. Citrullinated GAD65 peptides
displayed enhanced binding to HLA-DR4 and were recog-
nized by autoreactive CD4 T cells isolated from patients with
T1D [29]. Citrullinated glucose-regulated protein 78 was
identified as a modified autoantigen in murine beta cells and
was a target for autoreactive Tcells in mice [30]. Citrullination
could be increasing the binding affinity to predisposing HLA
molecules by making the peptide more acidic, resulting in
increased immunogenicity.

The common factor linking these modifications is the in-
crease in HLA binding affinity that results from PTM. As
such, stringent selection of a high-affinity TCR repertoire
against modified islet proteins is likely to play a role in T1D
pathogenesis. This has been shown in CD, where autoreactive
CD4 T cells isolated from patients with CD expressed an
HLA-DQ2 or HLA-DQ8-restricted, gluten peptide-specific
immunodominant TCR, with high avidity for HLA-DQ-
gluten peptide complexes. This concept might also bear rele-
vance in RA pathogenesis [31–33].

When in the Disease Process Are PTM Important?

Given the overlapping HLA class II susceptibility haplotypes
in CD and T1D, and the growing evidence that tTG can mod-
ify beta cell antigens, it is reasonable to frame our discussion
of when PTM occurs in T1D after our understanding of CD,
where deamidation of gluten peptides by tTG results in pref-
erential loading onto predisposing HLA-DQ molecules and
the activation of pathologic CD4 T cells [34]. In this model,
deamidation and neo-epitope formation are required for dis-
ease and precede autoimmunity. In the case of T1D, it is con-
ceivable that a precipitating event such as nonspecific inflam-
mation, metabolic stress, smaller pancreas size [35], or a viral
infection [36] activates modifying enzymes such as tTG in
beta cells and within tissue resident APC, thereby generating
modified beta cell proteins that are recognized by the immune
system (Fig. 1). The link between CD and T1D goes beyond
HLA-DQ susceptibility as a gluten-free diet was shown to
prevent diabetes in the NOD mouse model and even resulted
in remission in a 6-year-old child with T1D [37–40]. These
positive effects, resulting from removing gluten from the diet,
may relate to the impact of gluten on the composition of the
intestinal microbiota, leading to increased gut permeability
and subsequent activation of innate immunity and autoimmu-
nity in the gut [37, 41, 42]. A relation between the intestinal
microbiome and PTM of islet autoantigens, in particular
through activation of tTG, remains to be established.
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Emerging reports in human T1D indicate that modified anti-
gens are preferentially recognized over their native counter-
parts. T cells derived from a T1D subject expanded in re-
sponse to a modified insulin peptide containing a disulfide
bond but did not elicit a response in healthy subjects [6].
CD4 T cells specific for deamidated and citrullinated
GAD65 peptides were found at higher frequencies in patients
compared to HLA-matched controls [29]. Our own observa-
tions demonstrated that T cell responsiveness to the
deamidated versus the native form of a proinsulin peptide
was greatly increased in recent onset patients [5••]. Given
the low probability for thymic deletion of PTM protein-
reactive T cells and the higher binding affinity of deamidated
autoantigens for the predisposing HLA-DQ molecules, it is
tempting to propose that modified beta cell antigens are being
regarded as foreign by the immune system.

Intriguingly, attempts to generate T cells lines to native
proinsulin failed, whereas T cell lines against deamidated pro-
insulin peptides expanded rapidly and, once generated, cross-
reacted with native proinsulin, suggesting that priming may
occur against modified self-protein that spreads to the native
proteome [5••]. This evidence suggests that immune recogni-
tion of native autoantigens is preceded by recognition of

modified autoantigens and requires a degree of T cell promis-
cuity. Exactly when the onset and timeline of diabetes devel-
opment is influenced by PTM is still unclear, but it is interest-
ing to speculate that the degree to which an individual re-
sponds to modified antigens may correlate with an accelerated
clinical manifestation of diabetes.

Which modified antigens are most immunogenic and when
they become important for development of autoimmunity is
also unclear. Insulin and GAD65 antibodies are usually the
first antibodies detected in patient serum, and modifications
of these antigens may play a particularly important role in
disease initiation. Indeed, insulin and GAD65 exist in modi-
fied forms that elicit stronger immune responses in patients
with T1D than the native epitopes [5••, 6, 29]. Individuals
who are positive for multiple autoantibodies have an increased
risk of developing diabetes and generally are diagnosed at an
earlier age and require more aggressive insulin regimens [43].
Measuring autoantibodies specific for modified proteins is
already used in RA as a highly sensitive diagnostic tool even
prior to RA onset [44, 45]. Intriguingly, antibodies have been
detected in serum of patients with T1D recognizing GAD65
modified by reactive oxygen species [46] and antibodies rec-
ognizing oxidative-modified collagen type II [47]. More

Fig. 1 Connecting posttranslational modification of islet proteins with
the development of type 1 diabetes. This model begins with an as yet
undefined environmental stressor. Lead candidates include metabolic
stress, via changes in blood glucose concentration, and inflammatory
stress, perhaps through viral infection or the close links between the
pancreas and the gut. Stress results in a surge in PTM enzyme activity
in islets and APC. This surge creates a larger pool of modified proteins,
increasing the opportunity for modified peptides to be presented within
the islet immune compartment. The genetic predisposition becomes

important, as the HLA molecules in question (DQ2 and DQ8) are
exceptionally adept at binding deamidated epitopes. If the modified
epitopes are treated as Bforeign^ by the immune system, then an
immune response will ensue. This leads to a break in peripheral
tolerance to unmodified islet antigens via promiscuous T cells that are
able to recognize both their cognate deamidated epitope and the native
sequence. Beta cells readily present unmodified antigens, so the
autoreactive response quickly becomes destructive, resulting in overt
diabetes
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recently, antibodies to oxidative modified insulin were detect-
ed in patients with T1D that were negative for the presence of
insulin autoantibodies [48•]. If PTM of islet proteins preludes
T1D development, the presence of autoantibodies directed
against neo-antigens in patients with T1D may provide an
earlier and more robust biomarker for T1D development.

Clinical and Therapeutic Relevance of PTM

Current methods for predicting T1D during the preclinical
phase rely on serum autoantibody levels. These serological
markers have proved successful at identifying individuals
most at risk, but only a subset of islet autoantibody-positive
individuals progress to clinical diabetes [49]. Currently, there
are no biomarkers to distinguish those individuals that devel-
op disease versus those that remain asymptomatic. It is also
becoming increasingly clear that T1D is a heterogeneous dis-
ease, and classical serological markers have not proven useful
in stratifying the high-risk population [50, 51]. Furthermore,
the relatively late appearance of classical autoantibodies in
diabetes progression precludes any information on the timing
of disease initiation [52].

Autoantibodies specific for modified islet proteins may ad-
dress these limitations and be a more relevant clinical tool. If
autoantibodies against neo-autoantigens mark events closer to
the initiation of islet inflammation than classical autoanti-
bodies, there could be an opportunity to intervene prophylac-
tically rather than therapeutically to prevent the break in im-
mune tolerance. The specificity for a particular neo-
autoantigen could also help to characterize various forms of
islet autoimmunity and help inform decisions on which ther-
apeutic strategies would prove most promising for specific
individuals. If clinical symptoms correlate with both the im-
munogenicity of a particular modification and the degree to
which this modification occurs, measuring PTM could be
used to predict those high-risk individuals most likely to prog-
ress to clinical diabetes.

Evidence of autoantibodies to neo-autoantigens is increas-
ing; however, advances in mass spectrometry open the possi-
bility of detecting modified molecules directly in patient se-
rum. Analysis of the serum proteome for biomarker develop-
ment has been limited by the extremely low abundance of
relevant circulating proteins [53]. Advances in sample prepro-
cessing have improved the detection limit, however, making it
feasible to quantify changes in the serum proteome. This ap-
proach was used to identify increases in the levels of serum
amyloid protein A (SAA), C-reactive protein (CRP),
adiponectin, and insulin-like growth factor binding protein 2
in patients with T1D [53]. These innovations in proteomics
and the recent advances in our understanding of PTM relevant
to T1D warrant using the serum proteome to track molecular
changes of islet peptides throughout the progression of T1D.

Considering PTM of islet proteins alongside markers of beta
cell stress and/or destructionwill vastly improve the resolution
of preclinical disease progression, giving us the means to link
autoimmune events with changes in islet pathology in
patients.

PTM also hold promise for efforts aimed at (re)establishing
peripheral tolerance to islet autoantigens. Peptide immuno-
therapy is currently progressing from preclinical models into
phase I trials, based on observations that tolerogenic DC
(tolDC) pulsed with islet peptide induce antigen-specific im-
mune tolerance [54–56]. These therapeutic strategies could
easily extend to include PTM islet peptides. Interestingly,
how the peptide was delivered produced a differential regula-
tory response, as a peptide vaccine approach induced regula-
tory T cells, while peptide presented by to lDC resulted in IL-
10-mediated regulation [54]. Recent results indicate that
HLA-DQ2/8 restricted DC process and present both native
and deamidated peptides derived from native islet
autoantigens [17•]. This suggests that including PTM in a
vaccine approach might be redundant, since introducing a
native peptide may be sufficient to target T cells specific for
both the native and deamidated forms. The fact that DC pre-
sented deamidated epitopes suggests this might be an addi-
tional regulatory mechanism for promoting peripheral toler-
ance and opens up the possibility that this process is defective
in some patients [57].

There are still many questions on how best to exploit our
emerging knowledge of PTM in T1D. For instance, which
peptides should be considered for immunotherapy? Which
conditions activate modifying enzymes that contribute to
PTM? The infamous chicken versus the egg issue must also
be considered. Dometabolic stress [58], reduced pancreas size
[35], viral infection of beta cells [36], or perhaps even insulitis
[11] contribute to PTM? In these cases, PTM may be a con-
sequence, rather than a cause of islet autoimmunity. As our
understanding of the peptide-MHC-TCR interaction grows,
we could envision a targeted vaccine strategy that is based
on an individual’s HLA genotype. Of course, it is also possible
that different PTMs trigger autoimmunity in different individ-
uals, even if they are HLAmatched. Additional factors such as
age, sex, and environmental contact could all influence the
effectiveness of a vaccination regimen. The length of the pep-
tide used for inducing tolerance should also be scrutinized
carefully. If a peptide sequence is too short, it may directly
associate with MHC molecules and evade internalization.
This may be important considering our observation that DC
can modify internalized peptide. Thus, the use of synthetic
long peptides, such as those used for cancer therapy, may be
a likely starting point [59].

It is also unclear whether different PTMs are important at
different stages of disease or if PTMs collectively are most
important at disease initiation. Despite these uncertainties,
further investigation of PTM in the context of T1D will
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increase our understanding of disease pathogenesis, which
will undoubtedly stimulate new diagnostic and therapeutic
concepts for intervention and prevention.

Challenges and Conclusions

To understand the pathogenesis of T1D, the postulate of im-
munological Bignorance^ against neo-antigens as an underly-
ing mechanism should be further investigated. It is essential to
think Bout of the box,^ and several issues should be consid-
ered when investigating PTM of islet proteins and their role in
immune activation in T1D.

Proteomic studies on pancreatic islets are of indispensable
value to decipher PTM in the search toward therapeutic targets
in T1D. Currently, mass spectrometry is the state-of-the-art
technique to profile proteins in biological samples, and in the
last decade, mass spectrometers have been improved in terms of
sensitivity, resolution, andmeasurement speed. Identification of
proteins in biological samples involves screening the obtained
peptide spectra with peptide sequence databases (e.g., Mascot).
We recommend adjusting the rules of engagement regarding
proteome analysis for confident identification of PTM peptides.
It is important to be preemptive in terms of which PTM to look
for, as conventional peptide sequence screening does not in-
clude variable PTM, such as deamidation and citrullination.
In this context, the Mascot score may have less importance,
as PTM peptides might not be as abundant, meaning that iden-
tified PTM peptides with a low Mascot score should not be
discounted too quickly. It may also be necessary to include
individual disease-specific sequences, such as new splice vari-
ants and cross-linked products from endopeptides, if they are
not yet included in databases such as Mascot.

Unraveling patient heterogeneity and creating a T1D
Bimmunological barcode^would improve the efficacy of single
and combination (synergistic) therapies for specific groups of
patients (personalized medicine). Appreciation of disease het-
erogeneity has been underscored by finding that insulitic le-
sions had varying degrees of islet infiltration and beta cell loss
across affected organs [11]. Thus, considering the immunolog-
ical heterogeneity and polygenetic nature of T1D, it is plausible
that generation of neo-antigens does not take place uniformly,
either within the pancreatic islets of one individual or amongst
different individuals. Similarly, the same neo-antigens may not
be equally important in initiating or exacerbating disease
among different genetically predisposed individuals.

Biomarkers worthy of investigation include autoantibodies
directed against neo-antigens. Autoantibodies have already
proven to be useful in T1D research, autoantibodies against
native insulin were associated with differential outcome of
immunotherapy [60], and pancreas transplant recipients with
autoantibodies to native GAD65 were better served with
thymoglobulin induction therapy than daclizumab to reduce

their risk of rejection episodes [61]. Autoantibodies to
posttranslationally modified insulin have been detected in pa-
tients with T1D, where autoreactivity to oxidized insulin in
patients with T1D was more prevalent than native insulin auto-
antibodies [48•]. However, additional studies are required to
further elucidate the role of autoantibodies against PTM anti-
gens in T1D pathogenesis and their possible role as early bio-
markers for disease onset. It would be of interest to evaluate
whether autoantibodies against neo-antigens are present in large
cohorts of patients with T1D (recent-onset, longstanding,
longitudinal) and in patients who are classified as autoantibody
negative to the existing biomarkers (insulin, GAD65, Znt-8).

Ultimately, the real challenge is for researchers to constant-
ly rethink the current dogma around T1D pathogenesis. The
inclusion of PTM and neo-antigens will hopefully lead to a
better understanding of autoimmune activation, disease pro-
gression, and regulation, validation of novel biomarkers, and
development of successful immune therapies.
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