143 research outputs found

    Predicting Spike Occurrence and Neuronal Responsiveness from LFPs in Primary Somatosensory Cortex

    Get PDF
    Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role

    Structure and functional characterization of pyruvate decarboxylase from Gluconacetobacter diazotrophicus

    Get PDF
    BACKGROUND: Bacterial pyruvate decarboxylases (PDC) are rare. Their role in ethanol production and in bacterially mediated ethanologenic processes has, however, ensured a continued and growing interest. PDCs from Zymomonas mobilis (ZmPDC), Zymobacter palmae (ZpPDC) and Sarcina ventriculi (SvPDC) have been characterized and ZmPDC has been produced successfully in a range of heterologous hosts. PDCs from the Acetobacteraceae and their role in metabolism have not been characterized to the same extent. Examples include Gluconobacter oxydans (GoPDC), G. diazotrophicus (GdPDC) and Acetobacter pasteutrianus (ApPDC). All of these organisms are of commercial importance. RESULTS: This study reports the kinetic characterization and the crystal structure of a PDC from Gluconacetobacter diazotrophicus (GdPDC). Enzyme kinetic analysis indicates a high affinity for pyruvate (KM 0.06 mM at pH 5), high catalytic efficiencies, pHopt of 5.5 and Topt at 45 degrees C. The enzyme is not thermostable (T of 18 minutes at 60 degrees C) and the calculated number of bonds between monomers and dimers do not give clear indications for the relatively lower thermostability compared to other PDCs. The structure is highly similar to those described for Z. mobilis (ZmPDC) and A. pasteurianus PDC (ApPDC) with a rmsd value of 0.57 A for C? when comparing GdPDC to that of ApPDC. Indole-3-pyruvate does not serve as a substrate for the enzyme. Structural differences occur in two loci, involving the regions Thr341 to Thr352 and Asn499 to Asp503. CONCLUSIONS: This is the first study of the PDC from G. diazotrophicus (PAL5) and lays the groundwork for future research into its role in this endosymbiont. The crystal structure of GdPDC indicates the enzyme to be evolutionarily closely related to homologues from Z. mobilis and A. pasteurianus and suggests strong selective pressure to keep the enzyme characteristics in a narrow range. The pH optimum together with reduced thermostability likely reflect the host organisms niche and conditions under which these properties have been naturally selected for. The lack of activity on indole-3-pyruvate excludes this decarboxylase as the enzyme responsible for indole acetic acid production in G. diazotrophicus.IS

    Studies on two polyherbal formulations (ZPTO and ZTO) for comparison of their antidyslipidemic, antihypertensive and endothelial modulating activities

    Get PDF
    Background Cardiovascular disorders (CVDs) are the leading cause of disease burden worldwide. Apart from available synthetic drugs used in CVDs, there are many herbal formulations including POL-10 (containing 10 herbs), which have been shown to be effective in animal studies but POL-10 was found to cause tachycardia in rodents as its side effect. This study was designed to modify the composition of POL-10 for better efficacy and/or safety profile in CVDs. Methods To assess the antidyslipidemic, antihypertensive and endothelial modulatory properties of two herbal formulations, (ZPTO and ZTO) containing Z: Zingiber officinalis, P: Piper nigrum, T: Terminalia belerica and O: Orchis mascula, different animal models including, tyloxapol and high fat diet-induced dyslipidemia and spontaneously hypertensive rats (SHR) were used. Effect on endothelial function was studied using isolated tissue bath set up coupled with PowerLab data acquisition system. The antioxidant activity was carried out using DPPH radical-scavenging assay. Results Based on preliminary screening of the ingredients of POL-10 in tyloxapol-induced hyperlipidemic rats, ZPTO and ZTO containing four active ingredients namely; Z, P, T and O were identified for further studies and comparison. In tyloxapol-induced hyperlipidemic rats, both ZPTO and ZTO caused significant reduction in serum triglyceride (TG) and total cholesterol (TC). In high fat diet-fed rats, ZPTO decreased TC, low-density lipoproteins cholesterol (LDL-C) and atherogenic index (AI). ZTO also showed similar effects to those of ZPTO with additional merits being more effective in reducing AI, body weight and more importantly raising high-density lipoproteins. In SHR, both formulations markedly reduced systolic blood pressure, AI and TG levels, ZTO being more potent in reversing endothelial dysfunction while was devoid of cardiac stimulatory effect. In addition, ZTO also reduced LDL-C and improved glucose levels in SHR. In DPPH radical-scavenging activity test, ZTO was also more potent than ZPTO. Conclusion The modified formulation, ZTO was not only found more effective in correcting cardiovascular abnormalities than ZPTO or POL-10 but also it was free from tachycardiac side-effect, which might be observed because of the presence of Piper nigrum in ZPTO

    Structure and microstructure evolution of Al-Mg-Si alloy processed by equal-channel angular pressing

    Get PDF
    An ultrafine grained Al–Mg–Si alloy was prepared by severe plastic deformation using the equal-channel angular pressing (ECAP) method. Samples were ECAPed through a die with an inner angle of F = 90° and outer arc of curvature of ¿ = 37° from 1 to 12 ECAP passes at room temperature following route Bc. To analyze the evolution of the microstructure at increasing ECAP passes, X-ray diffraction and electron backscatter diffraction analyses were carried out. The results revealed two distinct processing regimes, namely (i) from 1 to 5 passes, the microstructure evolved from elongated grains and sub-grains to a rather equiaxed array of ultrafine grains and (ii) from 5 to 12 passes where no change in the morphology and average grain size was noticed. In the overall behavior, the boundary misorientation angle and the fraction of high-angle boundaries increase rapidly up to 5 passes and at a lower rate from 5 to 12 passes. The crystallite size decreased down to about 45 nm with the increase in deformation. The influence of deformation on precipitate evolution in the Al–Mg–Si alloy was also studied by differential scanning calorimetry. A significant decrease in the peak temperature associated to the 50% of recrystallization was observed at increasing ECAP passes.Peer ReviewedPreprin

    In vitro anti-HIV activity of some Indian medicinal plant extracts

    Get PDF
    Background Human Immunodeficiency Virus (HIV) persists to be a significant public health issue worldwide. The current strategy for the treatment of HIV infection, Highly Active Antiretroviral Therapy (HAART), has reduced deaths from AIDS related disease, but it can be an expensive regime for the underdeveloped and developing countries where the supply of drugs is scarce and often not well tolerated, especially in persons undergoing long term treatment. The present therapy also has limitations of development of multidrug resistance, thus there is a need for the discovery of novel anti-HIV compounds from plants as a potential alternative in combating HIV disease. Methods Ten Indian medicinal plants were tested for entry and replication inhibition against laboratory adapted strains HIV-1IIIB, HIV-1Ada5 and primary isolates HIV-1UG070, HIV-1VB59 in TZM-bl cell lines and primary isolates HIV-1UG070, HIV-1VB59 in PM1 cell lines. The plant extracts were further evaluated for toxicity in HEC-1A epithelial cell lines by transwell epithelial model. Results The methanolic extracts of Achyranthes aspera, Rosa centifolia and aqueous extract of Ficus benghalensis inhibited laboratory adapted HIV-1 strains (IC80 3.6–118 μg/ml) and primary isolates (IC80 4.8–156 μg/ml) in TZM-bl cells. Methanolic extract of Strychnos potatorum, aqueous extract of Ficus infectoria and hydroalcoholic extract of Annona squamosa inhibited laboratory adapted HIV-1 strains (IC80 4.24–125 μg/ml) and primary isolates (IC80 18–156 μg/ml) in TZM-bl cells. Methanolic extracts of Achyranthes aspera and Rosa centifolia, (IC801-9 μg/ml) further significantly inhibited HIV-1 primary isolates in PM1cells. Methanolic extracts of Tridax procumbens, Mallotus philippinensis, Annona reticulate, aqueous extract of Ficus benghalensis and hydroalcoholic extract of Albizzia lebbeck did not exhibit anti-HIV activity in all the tested strains. Methanolic extract of Rosa centifolia also demonstrated to be non-toxic to HEC-1A epithelial cells and maintained epithelial integrity (at 500 μg/ml) when tested in transwell dual-chamber. Conclusion These active methanolic extracts of Achyranthes aspera and Rosa centifolia, could be further subjected to chemical analysis to investigate the active moiety responsible for the anti-HIV activity. Methanolic extract of Rosa centifolia was found to be well tolerated maintaining the epithelial integrity of HEC-1A cells in vitro and thus has potential for investigating it further as candidate microbicide

    Vascular Dysfunction Induced in Offspring by Maternal Dietary Fat Involves Altered Arterial Polyunsaturated Fatty Acid Biosynthesis

    Get PDF
    Nutrition during development affects risk of future cardiovascular disease. Relatively little is known about whether the amount and type of fat in the maternal diet affect vascular function in the offspring. To investigate this, pregnant and lactating rats were fed either 7%(w/w) or 21%(w/w) fat enriched in either18:2n-6, trans fatty acids, saturated fatty acids, or fish oil. Their offspring were fed 4%(w/w) soybean oil from weaning until day 77. Type and amount of maternal dietary fat altered acetylcholine (ACh)-mediated vaso-relaxation in offspring aortae and mesenteric arteries, contingent on sex. Amount, but not type, of maternal dietary fat altered phenylephrine (Pe)-induced vasoconstriction in these arteries. Maternal 21% fat diet decreased 20:4n-6 concentration in offspring aortae. We investigated the role of Δ6 and Δ5 desaturases, showing that their inhibition in aortae and mesenteric arteries reduced vasoconstriction, but not vaso-relaxation, and the synthesis of specific pro-constriction eicosanoids. Removal of the aortic endothelium did not alter the effect of inhibition of Δ6 and Δ5 desaturases on Pe-mediated vasoconstriction. Thus arterial smooth muscle 20:4n-6 biosynthesis de novo appears to be important for Pe-mediated vasoconstriction. Next we studied genes encoding these desaturases, finding that maternal 21% fat reduced Fads2 mRNA expression and increased Fads1 in offspring aortae, indicating dysregulation of 20:4n-6 biosynthesis. Methylation at CpG −394 bp 5′ to the Fads2 transcription start site predicted its expression. This locus was hypermethylated in offspring of dams fed 21% fat. Pe treatment of aortae for 10 minutes increased Fads2, but not Fads1, mRNA expression (76%; P<0.05). This suggests that Fads2 may be an immediate early gene in the response of aortae to Pe. Thus both amount and type of maternal dietary fat induce altered regulation of vascular tone in offspring though differential effects on vaso-relaxation, and persistent changes in vasoconstriction via epigenetic processes controlling arterial polyunsaturated fatty acid biosynthesis

    Twist1 Suppresses Senescence Programs and Thereby Accelerates and Maintains Mutant Kras-Induced Lung Tumorigenesis

    Get PDF
    KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy

    The Promigratory Activity of the Matricellular Protein Galectin-3 Depends on the Activation of PI-3 Kinase

    Get PDF
    Expression of galectin-3 is associated with sarcoma progression, invasion and metastasis. Here we determined the role of extracellular galectin-3 on migration of sarcoma cells on laminin-111. Cell lines from methylcholanthrene-induced sarcomas from both wild type and galectin-3−/− mice were established. Despite the presence of similar levels of laminin-binding integrins on the cell surface, galectin-3−/− sarcoma cells were more adherent and less migratory than galectin-3+/+ sarcoma cells on laminin-111. When galectin-3 was transiently expressed in galectin-3−/− sarcoma cells, it inhibited cell adhesion and stimulated the migratory response to laminin in a carbohydrate-dependent manner. Extracellular galectin-3 led to the recruitment of SHP-2 phosphatase to focal adhesion plaques, followed by a decrease in the amount of phosphorylated FAK and phospho-paxillin in the lamellipodia of migrating cells. The promigratory activity of extracellular galectin-3 was inhibitable by wortmannin, implicating the activation of a PI-3 kinase dependent pathway in the galectin-3 triggered disruption of adhesion plaques, leading to sarcoma cell migration on laminin-111

    Analysis of the key elements of FFAT-like motifs identifies new proteins that potentially bind VAP on the ER, including two AKAPs and FAPP2.

    Get PDF
    Two phenylalanines (FF) in an acidic tract (FFAT)-motifs were originally described as having seven elements: an acidic flanking region followed by 6 residues (EFFDA-E). Such motifs are found in several lipid transfer protein (LTP) families, and they interact with a protein on the cytosolic face of the ER called vesicle-associated membrane protein-associated protein (VAP). Mutation of which causes ER stress and motor neuron disease, making it important to determine which proteins bind VAP. Among other proteins that bind VAP, some contain FFAT-like motifs that are missing one or more of the seven elements. Defining how much variation is tolerated in FFAT-like motifs is a preliminary step prior to the identification of the full range of VAP interactors
    corecore