97 research outputs found

    Impact of Immunization Technology and Assay Application on Antibody Performance – A Systematic Comparative Evaluation

    Get PDF
    Antibodies are quintessential affinity reagents for the investigation and determination of a protein's expression patterns, localization, quantitation, modifications, purification, and functional understanding. Antibodies are typically used in techniques such as Western blot, immunohistochemistry (IHC), and enzyme-linked immunosorbent assays (ELISA), among others. The methods employed to generate antibodies can have a profound impact on their success in any of these applications. We raised antibodies against 10 serum proteins using 3 immunization methods: peptide antigens (3 per protein), DNA prime/protein fragment-boost (“DNA immunization”; 3 per protein), and full length protein. Antibodies thus generated were systematically evaluated using several different assay technologies (ELISA, IHC, and Western blot). Antibodies raised against peptides worked predominantly in applications where the target protein was denatured (57% success in Western blot, 66% success in immunohistochemistry), although 37% of the antibodies thus generated did not work in any of these applications. In contrast, antibodies produced by DNA immunization performed well against both denatured and native targets with a high level of success: 93% success in Western blots, 100% success in immunohistochemistry, and 79% success in ELISA. Importantly, success in one assay method was not predictive of success in another. Immunization with full length protein consistently yielded the best results; however, this method is not typically available for new targets, due to the difficulty of generating full length protein. We conclude that DNA immunization strategies which are not encumbered by the limitations of efficacy (peptides) or requirements for full length proteins can be quite successful, particularly when multiple constructs for each protein are used

    Colocalization of connexin 36 and corticotropin-releasing hormone in the mouse brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gap junction proteins, connexins, are expressed in most endocrine and exocrine glands in the body and are at least in some glands crucial for the hormonal secretion. To what extent connexins are expressed in neurons releasing hormones or neuropeptides from or within the central nervous system is, however, unknown. Previous studies provide indirect evidence for gap junction coupling between subsets of neuropeptide-containing neurons in the paraventricular nucleus (PVN) of the hypothalamus. Here we employ double labeling and retrograde tracing methods to investigate to what extent neuroendocrine and neuropeptide-containing neurons of the hypothalamus and brainstem express the neuronal gap junction protein connexin 36.</p> <p>Results</p> <p>Western blot analysis showed that connexin 36 is expressed in the PVN. In bacterial artificial chromosome transgenic mice, which specifically express the reporter gene Enhanced Green Fluorescent Protein (EGFP) under the control of the connexin 36 gene promoter, EGFP expression was detected in magnocellular (neuroendocrine) and in parvocellular neurons of the PVN. Although no EGFP/connexin36 expression was seen in neurons containing oxytocin or vasopressin, EGFP/connexin36 was found in subsets of PVN neurons containing corticotropin-releasing hormone (CRH), and in somatostatin neurons located along the third ventricle. Moreover, CRH neurons in brainstem areas, including the lateral parabrachial nucleus, also expressed EGFP/connexin 36.</p> <p>Conclusion</p> <p>Our data indicate that connexin 36 is expressed in subsets of neuroendocrine and CRH neurons in specific nuclei of the hypothalamus and brainstem.</p

    Evidence of HIV-1 adaptation to host HLA alleles following chimp-to-human transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cytotoxic T-lymphocyte immune response is important in controlling HIV-1 replication in infected humans. In this immune pathway, viral peptides within infected cells are presented to T-lymphocytes by the polymorphic human leukocyte antigens (HLA). HLA alleles exert selective pressure on the peptide regions and immune escape mutations that occur at some of the targeted sites can enable the virus to adapt to the infected host. The pattern of ongoing immune escape and reversion associated with several human HLA alleles has been studied extensively. Such mutations revert upon transmission to a host without the HLA allele because the escape mutation incurs a fitness cost. However, to-date there has been little attempt to study permanent loss of CTL epitopes due to escape mutations without an effect on fitness.</p> <p>Results</p> <p>Here, we set out to determine the extent of adaptation of HIV-1 to three well-characterized HLA alleles during the initial exposure of the virus to the human cytotoxic immune responses following transmission from chimpanzee. We generated a chimpanzee consensus sequence to approximate the virus sequence that was initially transmitted to the human host and used a method based on peptide binding affinity to HLA crystal structures to predict peptides that were potentially targeted by the HLA alleles on this sequence. Next, we used codon-based phylogenetic models to quantify the average selective pressure that acted on these regions during the period immediately following the zoonosis event, corresponding to the branch of the phylogenetic tree leading to the common ancestor of all of the HIV-1 sequences. Evidence for adaptive evolution during this period was observed at regions recognised by HLA A*6801 and A*0201, both of which are common in African populations. No evidence of adaptive evolution was observed at sites targeted by HLA-B*2705, which is a rare allele in African populations.</p> <p>Conclusion</p> <p>Our results suggest that the ancestral HIV-1 virus experienced a period of positive selective pressure due to immune responses associated with HLA alleles that were common in the infected human population. We propose that this resulted in permanent escape from immune responses targeting unconstrained regions of the virus.</p

    Does practicing hatha yoga satisfy recommendations for intensity of physical activity which improves and maintains health and cardiovascular fitness?

    Get PDF
    Background: Little is known about the metabolic and heart rate responses to a typical hatha yoga session. The purposes of this study were 1) to determine whether a typical yoga practice using various postures meets the current recommendations for levels of physical activity required to improve and maintain health and cardiovascular fitness; 2) to determine the reliability of metabolic costs of yoga across sessions; 3) to compare the metabolic costs of yoga practice to those of treadmill walking. Methods: In this observational study, 20 intermediate-to-advanced level yoga practitioners, age 31.4 ± 8.3 years, performed an exercise routine inside a human respiratory chamber (indirect calorimeter) while wearing heart rate monitors. The exercise routine consisted of 30 minutes of sitting, 56 minutes of beginner-level hatha yoga administered by video, and 10 minutes of treadmill walking at 3.2 and 4.8 kph each. Measures were mean oxygen consumption (VO2), heart rate (HR), percentage predicted maximal heart rate (%MHR), metabolic equivalents (METs), and energy expenditure (kcal). Seven subjects repeated the protocol so that measurement reliability could be established. Results: Mean values across the entire yoga session for VO2, HR, %MHR, METs, and energy/min were 0.6 L/kg/min; 93.2 beats/min; 49.4%; 2.5; and 3.2 kcal/min; respectively. Results of the ICCs (2,1) for mean values across the entire yoga session for kcal, METs, and %MHR were 0.979 and 0.973, and 0.865, respectively. Conclusion: Metabolic costs of yoga averaged across the entire session represent low levels of physical activity, are similar to walking on a treadmill at 3.2 kph, and do not meet recommendations for levels of physical activity for improving or maintaining health or cardiovascular fitness. Yoga practice incorporating sun salutation postures exceeding the minimum bout of 10 minutes may contribute some portion of sufficiently intense physical activity to improve cardio-respiratory fitness in unfit or sedentary individuals. The measurement of energy expenditure across yoga sessions is highly reliable

    Trace elements in glucometabolic disorders: an update

    Get PDF
    Many trace elements, among which metals, are indispensable for proper functioning of a myriad of biochemical reactions, more particularly as enzyme cofactors. This is particularly true for the vast set of processes involved in regulation of glucose homeostasis, being it in glucose metabolism itself or in hormonal control, especially insulin. The role and importance of trace elements such as chromium, zinc, selenium, lithium and vanadium are much less evident and subjected to chronic debate. This review updates our actual knowledge concerning these five trace elements. A careful survey of the literature shows that while theoretical postulates from some key roles of these elements had led to real hopes for therapy of insulin resistance and diabetes, the limited experience based on available data indicates that beneficial effects and use of most of them are subjected to caution, given the narrow window between safe and unsafe doses. Clear therapeutic benefit in these pathologies is presently doubtful but some data indicate that these metals may have a clinical interest in patients presenting deficiencies in individual metal levels. The same holds true for an association of some trace elements such as chromium or zinc with oral antidiabetics. However, this area is essentially unexplored in adequate clinical trials, which are worth being performed

    Microfluidics: reframing biological enquiry

    Full text link
    The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools - in conjunction with advanced imaging, bioinformatics and molecular biology approaches - will transform biology into a precision science
    • 

    corecore