175 research outputs found

    More rapid polar ozone depletion through the reaction of HOCI with HCI on polar stratospheric clouds

    Full text link
    THE direct reaction of HOC1 with HC1, known to occur in liquid water1 and on glass surfaces2, has now been measured on surfaces similar to polar stratospheric clouds3,4 and is shown here to play a critical part in polar ozone loss. Two keys to understanding the chemistry of the Antarctic ozone hole5-7 are, one, the recognition that reactions on polar stratospheric clouds transform HC1 into more reactive species denoted by ClOx(refs 812) and, two, the discovery of the ClO-dimer (C12O2) mechanism that rapidly catalyses destruction of O3(refs 1315). Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere1619 confirm that most of the available chlorine is in the form of ClOx (refs 20, 21). But current photochemical models22,23 have difficulty converting HC1 to ClOx rapidly enough in early spring to account fully for the observations5-7,20,21. Here I show, using a chemical model, that the direct reaction of HOC1 with HC1 provides the missing mechanism. As alternative sources of nitrogen-containing oxidants, such as N2O5 and ClONO2, have been converted in the late autumn to inactive HNO3 by known reactions on the sulphate-layer aerosols24-27, the reaction of HOC1 with HC1 on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HC1. © 1992 Nature Publishing Group

    A comparison of multidisciplinary team residential rehabilitation with conventional outpatient care for the treatment of non-arthritic intra-articular hip pain in UK Military personnel:a protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Non-arthritic hip disorders are defined as abnormalities of the articulating surfaces of the acetabulum and femur before the onset of osteoarthritis, including intra-articular structures such as the acetabular labrum and chondral surfaces. Abnormal femoroacetabular morphology is commonly seen in young men who constitute much of the UK military population. Residential multidisciplinary team (MDT) rehabilitation for patients with musculoskeletal injuries has a long tradition in the UK military, however, there are no studies presenting empirical data on the efficacy of a residential MDT approach compared with individualised conventional outpatient treatment. With no available data, the sustainability of this care pathway has been questioned. The purpose of this randomised controlled trial is to compare the effects of a residential multidisciplinary intervention, to usual outpatient care, on the clinical outcomes of young active adults undergoing treatment for non-arthritic intra-articular hip pain. METHODS/DESIGN: The trial will be conducted at the Defence Medical Rehabilitation Centre, Headley Court, UK. One hundred military male participants with clinical indicators of non-arthritic intra-articular hip pain will be randomly allocated to either: (1) 7-day residential multidisciplinary team intervention, n = 50; (2) 6-week physiotherapist-led outpatient intervention (conventional care), n = 50. Measurements will be taken at baseline, post-treatment (1-week MDT group; 6-weeks physiotherapy group), and 12-weeks. The primary outcome measures are the function in daily living sub-scale of the Copenhagen Hip and Groin Outcome Score (HAGOS), the physical function subscale of the Non-arthritic Hip Score (NAHS), and VAS pain scale. Secondary outcomes include objective measures of physical capacity and general health. An intention-to-treat analysis will be performed using linear and mixed models. DISCUSSION: This study will be the first to assess the efficacy of intensive MDT rehabilitation, versus conventional outpatient care, for the management of non-arthritic hip pain. The results from this study will add to the evidence-base and inform clinical practice for the management of intra-articular non-arthritic hip pain and femoroacetabular impingement in young active adults. TRIAL REGISTRATION: ISRCTN Reference: ISRCTN 59255714 dated 11-Nov-2015 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12891-016-1309-z) contains supplementary material, which is available to authorized users

    Germline Transgenic Pigs by Sleeping Beauty Transposition in Porcine Zygotes and Targeted Integration in the Pig Genome

    Get PDF
    Genetic engineering can expand the utility of pigs for modeling human diseases, and for developing advanced therapeutic approaches. However, the inefficient production of transgenic pigs represents a technological bottleneck. Here, we assessed the hyperactive Sleeping Beauty (SB100X) transposon system for enzyme-catalyzed transgene integration into the embryonic porcine genome. The components of the transposon vector system were microinjected as circular plasmids into the cytoplasm of porcine zygotes, resulting in high frequencies of transgenic fetuses and piglets. The transgenic animals showed normal development and persistent reporter gene expression for >12 months. Molecular hallmarks of transposition were confirmed by analysis of 25 genomic insertion sites. We demonstrate germ-line transmission, segregation of individual transposons, and continued, copy number-dependent transgene expression in F1-offspring. In addition, we demonstrate target-selected gene insertion into transposon-tagged genomic loci by Cre-loxP-based cassette exchange in somatic cells followed by nuclear transfer. Transposase-catalyzed transgenesis in a large mammalian species expands the arsenal of transgenic technologies for use in domestic animals and will facilitate the development of large animal models for human diseases

    Reversible Disassembly of the Actin Cytoskeleton Improves the Survival Rate and Developmental Competence of Cryopreserved Mouse Oocytes

    Get PDF
    Effective cryopreservation of oocytes is critically needed in many areas of human reproductive medicine and basic science, such as stem cell research. Currently, oocyte cryopreservation has a low success rate. The goal of this study was to understand the mechanisms associated with oocyte cryopreservation through biophysical means using a mouse model. Specifically, we experimentally investigated the biomechanical properties of the ooplasm prior and after cryopreservation as well as the consequences of reversible dismantling of the F-actin network in mouse oocytes prior to freezing. The study was complemented with the evaluation of post-thaw developmental competence of oocytes after in vitro fertilization. Our results show that the freezing-thawing process markedly alters the physiological viscoelastic properties of the actin cytoskeleton. The reversible depolymerization of the F-actin network prior to freezing preserves normal ooplasm viscoelastic properties, results in high post-thaw survival and significantly improves developmental competence. These findings provide new information on the biophysical characteristics of mammalian oocytes, identify a pathophysiological mechanism underlying cryodamage and suggest a novel cryopreservation method

    Enhanced prefrontal serotonin 5-HT1A currents in a mouse model of Williams-Beuren syndrome with low innate anxiety

    Get PDF
    Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by the hemizygous deletion of 28 genes on chromosome 7, including the general transcription factor GTF2IRD1. Mice either hemizygously (Gtf2ird1+/−) or homozygously (Gtf2ird1−/−) deleted for this transcription factor exhibit low innate anxiety, low aggression and increased social interaction, a phenotype that shares similarities to the high sociability and disinhibition seen in individuals with WBS. Here, we investigated the inhibitory effects of serotonin (5-HT) on the major output neurons of the prefrontal cortex in Gtf2ird1−/− mice and their wildtype (WT) siblings. Prefrontal 5-HT receptors are known to modulate anxiety-like behaviors, and the Gtf2ird1−/− mice have altered 5-HT metabolism in prefrontal cortex. Using whole cell recording from layer V neurons in acute brain slices of prefrontal cortex, we found that 5-HT elicited significantly larger inhibitory, outward currents in Gtf2ird1−/− mice than in WT controls. In both genotypes, these currents were resistant to action potential blockade with TTX and were suppressed by the selective 5-HT1A receptor antagonist WAY-100635, suggesting that they are mediated directly by 5-HT1A receptors on the recorded neurons. Control experiments suggest a degree of layer and receptor specificity in this enhancement since 5-HT1A receptor-mediated responses in layer II/III pyramidal neurons were unchanged as were responses mediated by two other inhibitory receptors in layer V pyramidal neurons. Furthermore, we demonstrate GTF2IRD1 protein expression by neurons in layer V of the prefrontal cortex. Our finding that 5-HT1A-mediated responses are selectively enhanced in layer V pyramidal neurons of Gtf2ird1−/− mice gives insight into the cellular mechanisms that underlie reduced innate anxiety and increased sociability in these mice, and may be relevant to the low social anxiety and disinhibition in patients with WBS and their sensitivity to serotonergic medicines

    Rapid and Reversible Recruitment of Early Visual Cortex for Touch

    Get PDF
    The loss of vision has been associated with enhanced performance in non-visual tasks such as tactile discrimination and sound localization. Current evidence suggests that these functional gains are linked to the recruitment of the occipital visual cortex for non-visual processing, but the neurophysiological mechanisms underlying these crossmodal changes remain uncertain. One possible explanation is that visual deprivation is associated with an unmasking of non-visual input into visual cortex.We investigated the effect of sudden, complete and prolonged visual deprivation (five days) in normally sighted adult individuals while they were immersed in an intensive tactile training program. Following the five-day period, blindfolded subjects performed better on a Braille character discrimination task. In the blindfold group, serial fMRI scans revealed an increase in BOLD signal within the occipital cortex in response to tactile stimulation after five days of complete visual deprivation. This increase in signal was no longer present 24 hours after blindfold removal. Finally, reversible disruption of occipital cortex function on the fifth day (by repetitive transcranial magnetic stimulation; rTMS) impaired Braille character recognition ability in the blindfold group but not in non-blindfolded controls. This disruptive effect was no longer evident once the blindfold had been removed for 24 hours.Overall, our findings suggest that sudden and complete visual deprivation in normally sighted individuals can lead to profound, but rapidly reversible, neuroplastic changes by which the occipital cortex becomes engaged in processing of non-visual information. The speed and dynamic nature of the observed changes suggests that normally inhibited or masked functions in the sighted are revealed by visual loss. The unmasking of pre-existing connections and shifts in connectivity represent rapid, early plastic changes, which presumably can lead, if sustained and reinforced, to slower developing, but more permanent structural changes, such as the establishment of new neural connections in the blind

    Managing the climate commons at the nexus of ecology, behaviour and economics

    Get PDF
    Sustainably managing coupled ecological–economic systems requires not only an understanding of the environmental factors that affect them, but also knowledge of the interactions and feedback cycles that operate between resource dynamics and activities attributable to human intervention. The socioeconomic dynamics, in turn, call for an investigation of the behavioural drivers behind human action. We argue that a multidisciplinary approach is needed in order to tackle the increasingly pressing and intertwined environmental challenges faced by modern societies. Academic contributions to climate change policy have been constrained by methodological and terminological differences, so we discuss how programmes aimed at cross-disciplinary education and involvement in governance may help to unlock scholars' potential to propose new solutions

    Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function

    Get PDF
    Porcine Reproductive and Respiratory Syndrome (PRRS) is a panzootic infectious disease of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests differently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV, whereby the scavenger receptor cysteine-rich domain 5 (SRCR5) region was shown to be an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of macrophages, particularly in the respiratory system. Here we describe the application of CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs maintained under standard husbandry conditions with normal growth rates and complete blood counts observed. Pulmonary alveolar macrophages (PAMs) and peripheral blood monocytes (PBMCs) were isolated from the animals and assessed in vitro. Both PAMs and macrophages obtained from PBMCs by CSF1 stimulation (PMMs) show the characteristic differentiation and cell surface marker expression of macrophages of the respective origin. Expression and correct folding of the SRCR5 deletion CD163 on the surface of macrophages and biological activity of the protein as hemoglobin-haptoglobin scavenger was confirmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3 and PMMs with PRRSV genotype 2 showed complete resistance to viral infections assessed by replication. Confocal microscopy revealed the absence of replication structures in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to gene expression, i.e. at entry/fusion or unpacking stages
    corecore