23 research outputs found

    Yukawa Unification and the Superpartner Mass Scale

    Full text link
    Naturalness in supersymmetry (SUSY) is under siege by increasingly stringent LHC constraints, but natural electroweak symmetry breaking still remains the most powerful motivation for superpartner masses within experimental reach. If naturalness is the wrong criterion then what determines the mass scale of the superpartners? We motivate supersymmetry by (1) gauge coupling unification, (2) dark matter, and (3) precision b-tau Yukawa unification. We show that for an LSP that is a bino-Higgsino admixture, these three requirements lead to an upper-bound on the stop and sbottom masses in the several TeV regime because the threshold correction to the bottom mass at the superpartner scale is required to have a particular size. For tan beta about 50, which is needed for t-b-tau unification, the stops must be lighter than 2.8 TeV when A_t has the opposite sign of the gluino mass, as is favored by renormalization group scaling. For lower values of tan beta, the top and bottom squarks must be even lighter. Yukawa unification plus dark matter implies that superpartners are likely in reach of the LHC, after the upgrade to 14 (or 13) TeV, independent of any considerations of naturalness. We present a model-independent, bottom-up analysis of the SUSY parameter space that is simultaneously consistent with Yukawa unification and the hint for m_h = 125 GeV. We study the flavor and dark matter phenomenology that accompanies this Yukawa unification. A large portion of the parameter space predicts that the branching fraction for B_s to mu^+ mu^- will be observed to be significantly lower than the SM value.Comment: 34 pages plus appendices, 20 figure

    Antimicrobial and toxicological activities of five medicinal plant species from Cameroon Traditional Medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infectious diseases caused by multiresistant microbial strains are on the increase. Fighting these diseases with natural products may be more efficacious. The aim of this study was to investigate the <it>in vitro </it>antimicrobial activity of methanolic, ethylacetate (EtOAc) and hexanic fractions of five Cameroonian medicinal plants (<it>Piptadeniastum africana</it>, <it>Cissus aralioides, Hileria latifolia, Phyllanthus muellerianus </it>and <it>Gladiolus gregasius) </it>against 10 pathogenic microorganisms of the urogenital and gastrointestinal tracts.</p> <p>Methods</p> <p>The fractions were screened for their chemical composition and <it>in vivo </it>acute toxicity was carried out on the most active extracts in order to assess their inhibitory selectivity.</p> <p>The agar well-diffusion and the micro dilution methods were used for the determination of the inhibition diameters (ID) and Minimum inhibitory concentrations (MIC) respectively on 8 bacterial species including two Gram positive species (<it>Staphylococcus aureus, Enterococcus faecalis)</it>, and six Gram negative <it>(Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Shigella flexneri, Salmonella typhi) </it>and two fungal isolates (<it>Candida albicans, Candida krusei)</it>. The chemical composition was done according to Harbone (1976), the acute toxicity evaluation according to WHO protocol and the hepatic as well as serum parameters measured to assess liver and kidney functions.</p> <p>Results</p> <p>The chemical components of each plant's extract varied according to the solvent used, and they were found to contain alkaloids, flavonoids, polyphenols, triterpens, sterols, tannins, coumarins, glycosides, cardiac glycosides and reducing sugars. The methanolic and ethylacetate extracts of <it>Phyllanthus muellerianus </it>and <it>Piptadeniastum africana </it>presented the highest antimicrobial activities against all tested microorganisms with ID varying from 8 to 26 mm and MIC from 2.5 to 0.31 mg/ml. The <it>in vivo </it>acute toxicity study carried out on the methanolic extracts of <it>Phyllanthus muellerianus </it>and <it>Piptadeniastrum africana </it>indicated that these two plants were not toxic. At the dose of 4 g/kg body weight, kidney and liver function tests indicated that these two medicinal plants induced no adverse effect on these organs.</p> <p>Conclusion</p> <p>These results showed that, all these plant's extracts can be used as antimicrobial phytomedicines which can be therapeutically used against infections caused by multiresistant agents.</p> <p>Phyllanthus muellerianus, Piptadeniastum africana, antimicrobial, acute toxicity, kidney and liver function tests, Cameroon Traditional Medicine</p

    Microbial diversity and biogeochemical cycling in soda lakes

    Get PDF
    Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art ‘meta-omic’ techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments

    Paspalum striate mosaic virus: An Australian mastrevirus from Paspalum dilatatum

    No full text
    Three monocot-infecting mastreviruses from Australia, all found primarily in pasture and naturalised grasses, have been characterised at the molecular level. Here, we present the full genome sequence of a fourth, Paspalum striate mosaic virus (PSMV), isolated from Paspalum dilatatum from south-east Queensland. The genome was 2816 nt long and had an organisation typical of other monocot-infecting mastreviruses. Its nearest relative is Bromus cartharticus striate mosaic virus (BCSMV), with which it shares an overall genome identity of 75%. Phylogenetic analysis of the complete genome and each of the putative viral proteins places PSMV in a group with the other three Australian striate mosaic viruses. PSMV, BCSMV and Digitaria didactyla striate mosaic virus all contain a similar, small recombinant sequence in the small intergenic region

    A phosphatidylinositol 3-kinase-pax3 axis regulates brn-2 expression in melanoma.

    No full text
    Deregulation of transcription arising from mutations in key signaling pathways is a hallmark of cancer. In melanoma, the most aggressive and lethal form of skin cancer, the Brn-2 transcription factor (POU3F2) regulates proliferation and invasiveness and lies downstream from mitogen-activated protein kinase (MAPK) and Wnt/ÎČ-catenin, two melanoma-associated signaling pathways. In vivo Brn-2 represses expression of the microphthalmia-associated transcription factor, MITF, to drive cells to a more stem cell-like and invasive phenotype. Given the key role of Brn-2 in regulating melanoma biology, understanding the signaling pathways that drive Brn-2 expression is an important issue. Here, we show that inhibition of phosphatidylinositol 3-kinase (PI3K) signaling reduces invasiveness of melanoma cells in culture and strongly inhibits Brn-2 expression. Pax3, a transcription factor regulating melanocyte lineage-specific genes, directly binds and regulates the Brn-2 promoter, and Pax3 expression is also decreased upon PI3K inhibition. Collectively, our results highlight a crucial role for PI3K in regulating Brn-2 and Pax3 expression, reveal a mechanism by which PI3K can regulate invasiveness, and imply that PI3K signaling is a key determinant of melanoma subpopulation diversity. Together with our previous work, the results presented here now place Brn-2 downstream of three melanoma-associated signaling pathways.Journal Articleinfo:eu-repo/semantics/publishe
    corecore