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Abstract Soda lakes contain high concentrations of

sodium carbonates resulting in a stable elevated pH, which

provide a unique habitat to a rich diversity of haloalkali-

philic bacteria and archaea. Both cultivation-dependent and

-independent methods have aided the identification of key

processes and genes in the microbially mediated carbon,

nitrogen, and sulfur biogeochemical cycles in soda lakes.

In order to survive in this extreme environment, haloal-

kaliphiles have developed various bioenergetic and struc-

tural adaptations to maintain pH homeostasis and

intracellular osmotic pressure. The cultivation of a handful

of strains has led to the isolation of a number of ex-

tremozymes, which allow the cell to perform enzymatic

reactions at these extreme conditions. These enzymes

potentially contribute to biotechnological applications. In

addition, microbial species active in the sulfur cycle can be

used for sulfur remediation purposes. Future research

should combine both innovative culture methods and state-

of-the-art ‘meta-omic’ techniques to gain a comprehensive

understanding of the microbes that flourish in these

extreme environments and the processes they mediate.

Coupling the biogeochemical C, N, and S cycles and

identifying where each process takes place on a spatial and

temporal scale could unravel the interspecies relationships

and thereby reveal more about the ecosystem dynamics of

these enigmatic extreme environments.

Keywords Biogeochemical cycling � Haloalkaliphile �
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Introduction

Soda lakes are found worldwide, predominantly in arid and

semi-arid environments, such as the Rift Valley in East

Africa, the rain-shadowed regions of California and

Nevada, and the Kulunda Steppe in South Siberia (Russia)

(Fig. 1). Soda lakes are formed in depressions where

ground water rich in carbon dioxide, but poor in magne-

sium and calcium, leaches sodium from sodium-rich rocks.

The absence of dissolved divalent cations is crucial to

avoid carbonate precipitation. During arid climate condi-

tions in closed basins, carbonate salts become more con-

centrated due to increased evaporation rates, leading to the

formation of natural sodium carbonate/bicarbonate-buf-

fered systems with elevated pH values (9.5–11) and salt

concentrations up to saturation (Tindall 1988; Grant et al.

1990). The chemical composition of the prevailing salts

leads to perfect conditions for haloalkaliphiles to thrive.

Natronophily indicates a preference for sodium carbonates

over sodium chloride, the dominant salt in thalassic

(hyper)saline environments, and is based on the funda-

mental difference in the electrolytic and osmotic properties

of these two sodium salts (Banciu et al. 2004; Banciu and
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Sorokin 2013). Low and moderately saline soda lakes (total

salinity between 35 and 50 g/L and 50 and 250 g/L,

respectively) are highly productive and harbor fully func-

tional and diverse haloalkaliphilic microbial communities

responsible for the cycling of chemical elements, such as

carbon, nitrogen, and sulfur. Under hypersaline conditions

(total salinity[250 g/L) the diversity is restricted to a few

extremely salt-tolerant specialists (Ochsenreiter et al. 2002;

Mesbah et al. 2007). The carbon and nitrogen cycles are

presumably partly inhibited, as follows from the lack of

cultured methanotrops at moderate salinity (Sorokin et al.

2000; Trotsenko and Khmelenina 2002) and the cessation

of nitrification at high salt concentrations (Sorokin 1998).

Soda lakes are ‘treasure troves’ for biotechnologists,

because they harbor extremophiles with the potential to

produce enzymes (extremozymes) that are active both at a

high pH and high salinity. Alkali-stable extracellular pro-

teases, lipases, and cellulases have been used for the pro-

duction of improved laundry detergents (Horikoshi 2006).

Halo-alkali-stable cellulases can also be used to release

sugars from recalcitrant lignocellulose in agricultural waste

for the production of bioethanol. These enzymes have an

additional advantage, because ionic liquids (organic ana-

logues of inorganic salts) are frequently used during pre-

treatment in the solubilization of (ligno) cellulosic biomass

(Zhu 2008; Zavrel et al. 2009; Zhang et al. 2011). Besides

the discovery of novel hydrolases, a novel nitrile hydratase

was isolated from the soda lake Actinobacterium Nitrili-

ruptor alkaliphilus (van Pelt et al. 2008; Sorokin et al.

2009). Nitrile hydratases are important industrial enzymes

that catalyze the hydration of a broad scope of nitrile

compounds into commercially more valuable amides (e.g.

acrylamide). Apart from these extremozymes, whole cells

of haloalkaliphiles can be used for the sustainable removal

of toxic sulfur compounds from wastewater (Janssen et al.

2009; de Graaff et al. 2011) and gas streams (van den

Bosch et al. 2007; Sorokin et al. 2008f; Janssen et al.

2009), and for the biodegradation of hydrocarbons and

other organic (e.g. nitro-aromatics) and inorganic (e.g.

arsenic, uranium) pollutants (Sorokin et al. 2012c).

Here we present an overview of the cultured (Fig. 2 and

Table 1) and uncultured bacterial and archaeal diversity of

Fig. 1 World map depicting major areas where soda lakes occur

(green). A Rain shadowed area of California and Nevada. Mono Lake

is depicted (photograph by Sacha Heath). B Eurasian Steppe contains

the Kulunda steppe and Kulunda Lake. C Rift Valley contains many

soda lakes, such as Lake Bogoria (photograph from Shutterstock).

Shown in the top left is Van Lake in Turkey (photograph from

Shutterstock). Also indicated are the Central Mexican plateau,

Manitoba (Canada), Wadi al Natrun (Egypt), Decan Plateau (India),

and Eastern Australia
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soda lakes and focus on the role of these microorganisms in

the biogeochemical carbon, nitrogen, and sulfur cycles. In

addition, we discuss the molecular mechanisms that allow

these haloalkaliphilic prokaryotes to thrive at the double-

extreme conditions of high pH and high salinity.

Cultured diversity and their role in biogeochemical

cycles

The carbon cycle

Carbon fixation

Autotrophic primary producers in soda lakes able to fix

inorganic CO2 into organic polymers include oxygenic and

anoxygenic haloalkaliphilic phototrophs and some

chemolithoautotrophs (Fig. 3a1). The primary production

in most soda lakes is high due to a dense population of

haloalkaliphilic cyanobacteria (Melack 1981; Kompants-

eva et al. 2009). They include unicellular and filamentous

heterocystous and non-heterocystous groups. The plank-

tonic cyanobacterial forms, which are dominant in tropical

soda lakes in Kenya and Ethiopia (Fig. 1), include the

genera Arthrospira (Spirulina), Anabaenopsis and Cyano-

spira (Dubinin et al. 1995; Ballot et al. 2009; Dadheech

et al. 2013; Krienitz et al. 2013). Hypersaline soda brines

are dominated by the extremely haloalkaliphilic unicellular

cyanobacterium ‘Euhalothece natronophila’ (Mikhodyuk

et al. 2008). Haloalkaliphilic cyanobacteria are most

dominant at moderate salinity, whilst at higher salt con-

centrations only extremely salt-tolerant unicellular green

algae, such as Dunaliella viridis and Picocystis salinarium,

can thrive (Gerasimenko et al. 1999; Krienitz et al. 2012;

Roesler et al. 2002).

In the south Siberian soda lakes (Kulunda Steppe, Altai)

(Fig. 1), where the salinity ranges from 50 to 400 g/l, the

most common oxygenic phototrophic communities are

represented either by floating aggregates of the green algae

Ctenocladus and filamentous cyanobacteria or by filamen-

tous cyanobacterial biofilms. The biofilms mainly contain

haloalkaliphilic members of the genera Geitlerinema and

Nodosilinea and, occasionally, Leptolyngbya. Members

from the genera Arthrospira, which are dominant in equa-

torial soda lakes, are virtually absent in this area (O.

Samylina, personal communication). At reduced salinity a

mass development of heterocystous Anabaenopsis had been

observed in East-African soda lakes (Krienitz et al. 2013).

Cyanobacteria are traditionally considered as the only

diazotrophic component of the oxygenic phototrophic

community (Fig. 3b2). However, as they are only moder-

ately salt-tolerant, the identity and mechanisms of primary

nitrogen fixation in hypersaline soda lakes remain

enigmatic.

Anoxygenic phototrophs, represented by the haloalkali-

philic members of Chromatiales (Thiorhodospira,

Thiorhodovibrio) at moderate salinity and Ectothiorhodo-

spiracea (Ectothiorhodospira/Halorhodospira) at high

salinity, also contribute to the primary production in soda

lakes (Gorlenko 2007; Kompantseva et al. 2009). ‘Second-

ary’ primary producers represented by aerobic chemolitho-

autotrophic bacteria also contribute to inorganic carbon

fixation in soda lakes. Haloalkaliphilic representatives of

nitrifying, sulfur-oxidizing, H2-oxidizing, and carboxydo-

trophic bacteria have recently been isolated from soda lakes

and characterized (Sorokin and Kuenen 2005; Grant and

Sorokin 2011).

Heterotrophic carbon utilization

The heterotrophic bacteria, responsible for the primary

degradation of organic matter produced by the autotrophic

bacteria, include aerobes and fermentative anaerobes,

which in turn, are composed of two subgroups: the hy-

drolytics (Fig. 3a2), which degrade polymers, and the

secondary heterotrophs (‘dissipotrophs’) (Figs. 3a4) that

utilize the resulting monomers.

Aerobic hydrolytics, which produce alkali-stable

hydrolases, have been the focus of many studies in the past,

because of the high application potential of their enzymes

in industry (Horikoshi 2004, 2006). However, only few of

the known isolates were recovered from soda lakes. They

mostly include aerobic Firmicutes, such as species within

the genus Bacillus with various glycosidase activities and

several Actinobacteria, such as Cellulomonas and Dietzia,

and Gammaproteobacteria, such as the amylolytic Alkali-

monas (Grant and Sorokin 2011). Recently, it was shown

that aerobic haloalkaliphilic Actinobacteria and Gamma-

proteobacteria from the genus Marinimicrobium from soda

lakes and soda soils can utilize chitin as growth substrate

(Sorokin et al. 2012a). So far, only a single pure culture of

an anaerobic low salt-tolerant cellulolytic bacterium has

been recovered from a soda lake represented by Clostrid-

ium alkalicellum (Zhilina et al. 2005a). Two recently

described fermentative anaerobic haloalkaliphiles from

soda lakes can use pectin as substrate either at moderate

(Natronoflexus pectinovorans from the Bacteriodetes) or

high salt concentration (Natronovirga from the Clostridi-

ales) (Sorokin et al. 2011a, 2012b) (Fig. 3a3). Addition-

ally, two deep lineages of fermentative haloalkaliphilic

bacteria specialized to exclusively utilize chitin as growth

substrate were isolated from soda lakes. Both groups

belong to the phylum TG3, which, until now, only included

uncultured bacteria (Sorokin et al. 2012a). The high salt-
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tolerant group has recently been described as Chitinivibrio

alkaliphilus (Sorokin et al. 2014a).

Secondary (‘dissipotrophic’) heterotrophs, i.e., those that

utilize monomeric organic compounds such as sugars,

amino acids, organic acids, and alcohols are among the best

represented groups of haloalkaliphiles isolated so far from

soda lakes (Fig. 3a4). Among the aerobes, haloalkaliphilic

members of the genus Halomonas from the Gammaprote-

obacteria, Bacillus from the Firmicutes, and Actinobacteria

are the most abundant (Duckworth et al. 1996; Grant and

Sorokin 2011). Soda lake fermentative anaerobes are

dominated by haloalkaliphilic representatives of Clostridia,

such as members of the genera Anoxynatronum, Anaero-

virgula, Alkaliphilus, Natranaerobius, Natranaerobaculum,

and certain species of Anaerobranca, Spirochaeta, and

Anaerobacillus (Zavarzin et al. 1999; Zavarzin and Zhilina

2000; Bowers et al. 2009; Grant and Sorokin 2011; Mesbah

and Wiegel 2012) (Fig. 3a5). Among the secondary

anaerobes, which function during the last stage of organic

carbon degradation, homoacetogens (Fig. 3a7) and metha-

nogens (Fig. 3a6) represent the least studied functional

groups of soda lake microbial communities. The genera

Tindallia, Natronincola (Clostridiales), and Natroniella

acetogena (Halanaerobiales) represent heterotrophic fer-

mentative haloalkaliphilic acetogens, utilizing amino acids

and alcohols as substrates (Kevbrin et al. 1998; Zhilina et al.

1995, 1998). Hydrogenotrophic acetogens in soda lakes

have only recently been discovered. The only culturable

organism is represented by a novel, extremely salt-tolerant

haloalkaliphilic member of the Halanaerobiales described

as Fuchsiella alkaliacetigena (Zhilina et al. 2012).

Methane cycle

The methane cycle has been explored in soda lakes as an

important part of the microbial carbon cycle. Substantial

efforts have been made to detect methanogenic activity in

anaerobic sediments from North American and Central

Asian soda lakes (Fig. 1). The results clearly demonstrated

a dominance of methylotrophic methanogenesis and

absence of acetoclastic processes, while the results con-

cerning hydrogenotrophic methanogenesis were inconclu-

sive (Oremland and Miller 1993; Namsaraev et al. 1999;

Sorokin et al. 2004a; Nolla-Ardèvol et al. 2012). Some

of the key haloalkaliphilic players in soda lake metha-

nogenesis have been isolated in pure culture and

described, including two groups of methylotrophs, such as

Methanolobus taylorii (moderate salinity) and Methano-

salsum zhilinae (high salinity), and a highly salt-tolerant

lithotroph Methanocalculus natronophilus (Mathrani et al.

1988; Oremland and Boone 1994; Kevbrin et al. 1997;

Zhilina et al. 2013).

Aerobic methanotrophs in soda lakes are dominated by

low salt-tolerant alkaliphiles from the Gammaproteobac-

terial genus Methylomicrobium (Sorokin et al. 2000;

Trotsenko and Khmelenina 2002). Assuming that methan-

otrophic alkaliphiles cannot grow at salinities above 1.5 M

of total Na?, while methane production still occurs at these

high salinity values, the methane cycle in hypersaline soda

lakes may be incomplete, similar as in hypersaline chlo-

ride–sulfate lakes (Conrad et al. 1995).

The nitrogen cycle

Denitrification in soda lakes is performed by heterotrophs

dominated by extremely salt-tolerant alkaliphilic represen-

tatives of the genus Halomonas (Shapovalova et al. 2009)

and by several facultative anaerobic lithotrophs, such as

representatives of the genus Thioalkalivibrio (see below)

and the Alkalilimnicola–Alkalispirillum group of the Gam-

maproteobacteria (Sorokin et al. 2006; Hoeft et al. 2007)

(Fig. 3b1). Whether dissimilatory ammonification competes

with denitrification in soda lakes has not yet been resolved.

So far, the alkaliphiles with this metabolism have only been

found in bioreactors operating at high pH, i.e., Desulfuri-

spirillum alkaliphilum from the phylum Chrysiogenetes

(Sorokin et al. 2007b) and Sulfurospirillum alkalitolerans

from the Epsilonproteobacteria (Sorokin et al. 2013a).

Heterotrophic anaerobic fermentative haloalkaliphiles

actively fix nitrogen in soda lakes and soda soils (Sorokin

et al. 2008c) (Fig. 3b2). These organisms are represented

by two groups of the Firmicutes: a moderate salt-tolerant

Anaerobacillus diazotrophicus (reclassified from Bacillus

alkalidiazotrophicus) (Sorokin et al. 2008d) and a highly

salt-tolerant Natronobacillus azotifigans (Sorokin et al.

2008e). Furthermore, the microbial activity and presence of

the nifH gene, encoding a nitrogenase, have also been

detected in two other soda lake anaerobes: the iron-

reducing Geoalkalibacter ferrihydriticus (Zavarzina et al.

2006) and the cellulolytic Clostridium alkalicellulosi

(Zhilina et al. 2005a). Additionally, the nifH gene has been

detected in several soda lake anoxygenic phototroph rep-

resentatives (Tourova et al. 2007), which indicates that

anoxygenic phototrophs may also contribute to nitrogen

fixation. Not much research has been conducted on nitro-

gen fixation in soda lakes at oxic conditions. However, a

major suspect is a group of heterocystous low salt-tolerant

alkaliphilic cyanobacteria from the Anabaena group

(Anabaenopsis and Nodularia) (O. Samylina, personal

communication). Nitrogen fixation activity has been

b Fig. 2 Phylogenetic tree of identified bacteria and archaea in soda

lakes. Indicated are the cultured microbes whom have been shown to

be active in biogeochemical cycling (green carbon cycle, blue

nitrogen cycle, yellow sulfur cycle, see Fig. 3). The red font indicates

that the genome of the strain has been sequenced
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documented for aggregates of filamentous non-heterocys-

tous Phormidium-like cyanobacteria and green algae

belonging to the Ctenocladus in the oxic littoral zone of

Mono Lake (Oremland 1990). However, it was not clear

whether the phototrophic or the heterotrophic bacteria were

responsible for the observed diazotrophy.

The ammonium produced during nitrogen fixation in

soda lakes can be oxidized to nitrate via nitrite by haloal-

kaliphilic nitrifiers (Fig. 3b4). In soda lakes and soda soils

ammonium oxidation to nitrite is performed by an extre-

mely alkali-tolerant subpopulation of Nitrosomonas halo-

phila, whilst nitrite oxidation can be performed by the

moderately alkali-tolerant Nitrobacter alkalicus (Sorokin

and Kuenen 2005). Since the maximum salt concentration

for nitrification in soda lakes is 1 M of total Na? (Sorokin

1998), the nitrogen cycle is inhibited in hypersaline soda

lakes. In addition, the NH3/NH4
? equilibrium at high pH

favors the formation of toxic NH3 and, therefore, causes

potential N-loss from the ecosystem (Tindall 1988; Sorokin

and Kuenen 2005). Therefore, the nitrogen cycle in soda

lakes, especially in hypersaline ones, may depend on an

externally supplied source of NOx
-.

The sulfur cycle

Sulfidogenesis

The dissimilatory reduction of oxidized sulfur compounds

such as sulfate, sulfite, thiosulfate, and sulfur, resulting in

sulfide production (sulfidogenesis) are important biogeo-

chemical processes within soda lakes (Sorokin et al. 2010a,

2011b) (Fig. 3c1). Several obligatory anaerobic and oblig-

atory haloalkaliphilic bacteria can perform these reactions.

Members of the deltaproteobacterial genera Desulfonatro-

num, Desulfonatronovibrio, and Desulfonatronospira rep-

resent lithotrophic sulfate-reducing bacteria (SRB) in soda

lakes (Sorokin et al. 2011c). They can grow either as typical

SRB by oxidizing hydrogen, formate or short-chain organic

compounds as electron donor, and sulfate, thiosulfate or

sulfite as electron acceptor, or they can obtain energy by

thiosulfate or sulfite disproportionation (Sorokin et al.

2008a, 2011b). Heterotrophic SRB in soda lakes belong to

the group of incomplete oxidizers, utilizing either propio-

nate (Desulfobulbus alkaliphilus) or butyrate (Desulfobot-

ulus alkaliphilus) as e-donor/C-source with sulfate or

thiosulfate as e-acceptor and forming acetate as a final

product (Sorokin et al. 2010b; Sorokin et al. 2012d). So far,

only a single haloalkaliphilic SRB, described as Desulfon-

atronobacter acidivorans, has been found in soda lakes,

which belongs to the complete oxidizers (Sorokin et al.

(A)

(B)

(C)

Fig. 3 Microbially mediated biogeochemical redox cycles in soda

lakes. a The carbon cycle, b The nitrogen cycle, and c the sulfur cycle
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2012c). It can oxidize several volatile fatty acids (VFA)

completely to CO2 with sulfate or thiosulfate as e-acceptor,

but cannot utilize externally provided acetate. Haloalkali-

philic syntrophic associations of reverse acetogenic Clos-

tridiales members and lithotrophic SRB drive acetate

oxidation in soda lakes under sulfate-reducing conditions.

At low salt concentrations the association includes ‘‘Can-

didatus Contubernalis alkalaceticum’’ and Desulfonatro-

num cooperativum (Zhilina et al. 2005b), whilst at

extremely high salt concentrations the association contained

‘‘Candidatus Syntrophonatronum acetioxidans’’ and Des-

ulfonatronospira sp. (Sorokin et al. 2014b).

Elemental sulfur reduction in soda lakes is probably not

performed by SRB, since none of the pure cultures of

haloalkaliphilic SRB can grow with sulfur as e-acceptor.

Instead, three different lineages of obligatory anaerobic

haloalkaliphiles are implicated in sulfur reduction. In all

three, the actual e-acceptor is not sulfur itself, but poly-

sulfide (Sx
2-) forming abiotically at high pH from sulfur

and sulfide. The first, Desulfurispira natronophila, belongs

to the phylum Chrysiogenetes (Sorokin and Muyzer 2010).

The second group of sulfur/polysulfide-respiring haloal-

kaliphiles, belongs to the Firmicutes and was isolated from

soda lakes with formate as e-donor. A moderately salt-

tolerant representative is described as Desulfuribacillus

alkaliarsenatis (Sorokin et al. 2012d). Apart from sulfur, it

can also use arsenate and thiosulfate as e-acceptors. Third,

at saturated soda concentrations, microbial-mediated sulfur

reduction can also be performed by Natroniella sulfidigena,

which belongs to the Halanaerobiales. It can use acetate,

H2, and formate as e-donors for sulfur/polysulfide-depen-

dent respiration (Sorokin et al. 2011d).

Elemental sulfur disproportionation

Two anaerobic low salt-tolerant alkaliphilic anaerobes

from soda lakes, Dethiobacter alkaliphilus and Desulfuri-

vibrio alkaliphilus, originally described as sulfur and

thiosulfate reducers (Sorokin et al. 2008b), have the

capability to grow chemolithoautotrophically by sulfur or

polysulfide disproportionation (Fig. 3c3). Remarkably,

they are the first alkaliphiles with such a physiology, and in

contrast to the neutrophilic sulfur disproportionators, they

do not require the presence of ferric iron to precipitate

toxic sulfide compounds (Poser et al. 2013).

Sulfur-oxidizers

Sulfide produced by sulfidogens can be oxidized to ele-

mental sulfur or sulfate by phototrophic and chemotrophic

sulfur oxidizing bacteria (SOB) (Fig. 3c2). In soda lakes, the

(A)

(B)

(C)

Fig. 4 Proposed adaptation strategies to the extreme haloalkaline

environment. a Bioenergetic adaptations: 1 Electrogenic proton

antiporters with Na? or K?. 2 Electroneutral antiporters. 3 Voltage-

gated Na? channel. 4 Na?-dependent flagella. 5 Na? ATPase.

b Osmoprotectants retain the osmotic pressure within the cell via the

1 Salt in cytoplasm strategy or 2 the synthesis or accumulation of

osmoprotectants. c Structural membrane adaptations to survive the

extreme haloalkaline conditions: 1 squalene or 2 cardiolipins
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former are dominated by anoxygenic purple sulfur bacteria,

including haloalkaliphilic members of the genera Ectothio-

rhodospira and Halorhodospira at high salinity, and mem-

bers of the genera Thiorhodospira, Thioalkalicoccus, and

Ectothiorhodosinus at low salinity (Imhoff and Trueper

1981; Gorlenko 2007). The chemotrophic SOB in soda lakes

belong to 4 genera of the haloalkaliphilic Gammaproteo-

bacteria: the genera Thioalkalimicrobium and Thioalkali-

spira are moderate salt-tolerant aerobic alkaliphiles, while

the genera Thioalkalivibrio and Thioalkalibacter can grow

in salt concentrations reaching saturation (Sorokin et al.

2013b). They are obligate autotrophs and utilize reduced

sulfur compounds, including sulfide, polysulfide, thiosul-

fate, polythionates, and elemental sulfur as e-donor (Sorokin

et al. 2001b, c, 2002b, 2003; Banciu et al. 2004) The genus

Thioalkalivibrio is the most metabolically flexible and tol-

erates a wide range of salinity values. Several Thioalkaliv-

ibrio species have the ability to grow anaerobically with

NOx
- as e-acceptors (Fig. 3b1), such as Tv. denitrificans

(Sorokin et al. 2001b), Tv. nitratireducens (Sorokin et al.

2003), and Tv. thiocyanodenitrificans (Sorokin et al. 2004b).

Other Thioalkalivibrio species such as Tv. thiocyanoxi-

dans, Tv. paradoxus, and Tv. thiocyanodenitrificans, are

capable of growth using thiocyanate as the sole energy,

sulfur, and nitrogen source (Sorokin et al. 2001c, 2002b,

2004b). The first two species degrade thiocyanate primarily

to cyanate and were the first SOB cultures for which the

cyanate pathway of primary thiocyanate degradation has

been shown.

Prokaryotic diversity, activity, and community

structure identified by cultivation-independent

approaches

It is well recognized that from the majority of the micro-

organisms in nature, cultured isolates are yet to be

obtained. Alternative cultivation-independent approaches,

especially those based on the characterization of DNA,

have proven to be very useful in expanding the known

diversity of the microbial communities thriving under the

extreme conditions of high salinity and high pH. Grant

et al. (1999) were the first to use molecular methods to

study the archaeal diversity of saturated alkaline brines in

Lake Magadi (Kenya, Africa) (Fig. 1). Thereafter, the

presence of novel prokaryotic phylotypes in various soda

lakes was shown by cloning and/or denaturing gradient gel

electrophoresis (DGGE) of 16S rRNA gene fragments

(Ochsenreiter et al. 2002; Rees et al. 2004; Ma et al. 2004;

Mesbah et al. 2007). More recently, next-generation

sequencing of PCR-amplified regions of the 16S rRNA

gene and reversed transcribed mRNA have been used

(Lanzen et al. 2013).

Cultivation-independent approaches have also greatly

improved our understanding of the overall microbial

community structure and functioning in soda lakes, which

seems to be governed by the prevailing salt concentrations.

There is some evidence that hypersaline soda lake brines

(total salinity [250 g/L) harbor similar microbial com-

munities to hypersaline solar saltern brines of neutral pH.

The latter are characterized by a low diversity dominated

by a few extremely halophilic archaea, belonging to the

class Halobacteria within the phylum Euryarchaeota

(Rodriguez-Valera et al. 1985; Oren 1994; Casamayor

et al. 2002; Ghai et al. 2011). It is conceivable that

hypersaline soda lake brines may also be dominated by

such archaea, as evidenced by the failure to amplify bac-

terial 16S rRNA genes from the soda brines (Grant et al.

1999) and the clear dominance of euryarchaeal sequences

in 16S rRNA gene libraries (Grant et al. 1999; Ochsenreiter

et al. 2002; Mesbah et al. 2007). The latter sequences share

a high similarity with members from the family Halobac-

teriaceae (class Halobacteria; Ochsenreiter et al. 2002;

Mesbah et al. 2007) and from halophilic members of the

order Methanosarcinales (class Methanomicrobia) (Mes-

bah et al. 2007).

Moderately saline soda lake brines (total salinity

between 50 and 250 g/L) harbor more diverse microbial

communities than hypersaline environments and the com-

munity composition is affected by lake stratification and

prevailing oxygen concentrations (Dimitriu et al. 2008;

Carini and Joye 2008). The total bacterial and archaeal

diversity in low saline lakes (total salinity between 35 and

50 g/L) can be as high as that in fresh water lakes (Lanzen

et al. 2013). Several studies on the bacterioplankton from

low and moderate saline soda lakes showed the dominant

presence of Alphaproteobacteria (mostly from the family

Rhodobacteraceae) and Gammaproteobacteria (including

the genera Halomonas and Thioalkalivibrio), Firmicutes

(aerobic Bacillus, anaerobic Clostridia), Bacteroidetes

(Cytophaga, Flexibacter, Flavobacterium, Bacteroides,

Salinibacter), the cyanobacterial genera Arthrospira and

Anabaenopsis, and several purple phototrophic bacteria

belonging to the families of Ectothiorhodospiraceae,

Chromatiaceae and Rhodobacteraceae (Humayoun et al.

2003; Dimitriu et al. 2008; Mesbah et al. 2007; Pagaling

et al. 2009; Lanzen et al. 2013; Dadheech et al. 2013; Asao

et al. 2011).

The salt concentration in the sedimentary pore water of

soda lakes also has a strong influence on the in situ

microbial community composition (Mesbah et al. 2007)

and negatively affects the diversity (Kulp et al. 2007; Foti

et al. 2008). In addition, some of the fundamental bio-

geochemical cycles are hampered through the inhibition of

key catabolic transformations, such as denitrification, sul-

fate reduction, and methanogenesis (Kulp et al. 2007;
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Sorokin et al. 2010a). Nevertheless, bacterial 16S rRNA

from clone libraries and DGGE bands from moderate and

hypersaline soda lake sediments was found to be relatively

diverse, including various Alphaproteobacteria from the

order Rhodobacterales or related to the genus Brevundi-

monas; Firmicutes (mainly Clostridia), Gammaproteobac-

teria, Bacteroidetes, Betaproteobacteria (genera

Alcaligenes and Comamonas), Deltaproteobacteria (orders

Desulfovibrionales and Desulfobacterales), Actinobacteria

(moderate salinities), and benthic cyanobacteria (Mesbah

et al. 2007; Ma et al. 2004; Foti et al. 2008; Dimitriu et al.

2008; Kulp et al. 2006).

Molecular studies targeting functional genes are neces-

sary to identify possible microbial-mediated processes

within the biogeochemical element cycles (Fig. 3). Giri

et al. (2004) were the first to use cbbL/M genes, encoding

the large subunit of RuBisCo form I/II (Watson and Tabita

1997), as a functional and phylogenetic marker for auto-

trophs in soda lakes. They studied the distribution of these

genes along a redox gradient in the sediment of Mono Lake

(USA).

To study the diversity of autotrophic bacteria in soda

lake sediments from the Kulunda Steppe (Siberia, Russia)

and Wadi Natrun (Egypt) (Fig. 1), Kovaleva and col-

leagues (Kovaleva et al. 2011) used aclB, which encodes

the large subunit of ATP citrate lyase part of the reverse

Krebs cycle, in addition to cbbL/M (Campbell et al. 2003).

Overall, most autotrophs in the studied soda lake sediments

use the Calvin–Benson–Bassham cycle for inorganic car-

bon fixation, with RuBisCO form I as the dominant and

most diverse type. More specifically, the autotrophs in the

sediments of hypersaline soda lakes were primarily com-

posed of cyanobacteria and haloalkaliphilic SOB from the

family Ectothiorhodospiraceae (class Gammaproteobacte-

ria, order Chromatiales), including the chemolithotrophic

genus Thioalkalivibrio and the phototrophic genus Halo-

rhodospira (Giri et al. 2004; Kovaleva et al. 2011). In the

less saline lakes, distinct novel lineages of anoxygenic

phototrophs with RuBisCO form I within the order Chro-

matiales were found (Kovaleva et al. 2011). Autotrophic

nitrification in Mono Lake was studied via bacterial and

archaeal amoA and 16S rRNA gene libraries (Carini and

Joye 2008). Samples were taken after an extended period of

meromixis during which significant nitrification was mea-

sured and the mixoliminion was presumed to have become

chronically N-deprived (Joye et al. 1999; Carini and Joye

2008). Ammonia monooxygenase catalyzes the first step in

aerobe ammonium oxidation by autotrophic nitrifiers, and

amoA, encoding its active-site polypeptide, is frequently

used as a functional marker (Junier et al. 2010).

Sequences obtained from ammonia-oxidizing bacteria

(AOB) were most closely related to halo- and/or alkali-

tolerant Nitrosomonas-like sequences. Additionally, FISH

analysis revealed the presence of Crenarchaeota and the

correlation of nitrification rates with crenarchaeal numbers.

Although no archaeal amoA sequences were detected, it

cannot be ruled out that ammonia-oxidizing archaea

(AOA) contribute significantly to nitrification in Mono

Lake (Carini and Joye 2008). Key functional genes of

dissimilatory SRB are dsrAB, which encodes the a- and b-

subunits of a dissimilatory sulfite reductase, and apsA,

which encodes the a-subunit of an APS reductase (Wagner

et al. 2005). Two independent studies focusing on these

genes in sediment samples and enrichment cultures from

Mono Lake (USA; Scholten et al. 2005) and soda lakes in

Siberia (Russia; Foti et al. 2007) revealed novel clusters of

SRB affiliated to the deltaproteobacterial order Desulf-

ovibrionales and the family Desulfobacteraceae within the

order Desulfobacterales. The latter comprises all of the

known SRB that oxidize acetate completely during sulfate

reduction. In combination with high dsrB copy numbers

per cell and sulfate reduction rates encountered even in

soda lakes with more than 475 g/L, Foti et al. (2007)

challenged an earlier hypothesis, specifically for the case of

soda lakes, that complete carbon oxidizers could only grow

at salt concentrations below 150 g/L (Oren, 1999 and Oren

2011).So far, no acetate-oxidizing SRB have been isolated

from soda lakes, even at low salinity.

The oxidative part of the sedimentary sulfur cycle was

also studied in various soda lakes from Siberia and Egypt

(Tourova et al. 2013) by targeting soxB, which encodes an

indispensible sulfate thiohydrolase in the Sox pathway

proposed for the oxidation of thiosulfate in SOB (Ghosh

and Dam 2009). The majority of detected SOB sequences

belonged to autotrophic Gammaproteobacteria, including

the genus Thioalkalivibrio from which already many cul-

tured isolates have been obtained. Interestingly, uncultured

putative heterotrophic SOB from the Gamma-and Alpha-

proteobacterial classes have been found by comparing soxB

clone libraries (Tourova et al. 2013) with earlier con-

structed cbbL/M genes from the same sediment samples

(Kovaleva et al. 2011).

A very effective technique to study microbial activity is

the use of stable isotope probing (SIP; Dumont and Murrell

2005). Lin et al. (2004) used this approach to identify

active methanotrophs in sediments of a low saline Trans-

baikal soda lake. By targeting both 16S rRNA genes as

well as genes encoding pmoA and mmoX, key enzymes in

the aerobic methane oxidation pathway (McDonald et al.

2008), they found that the type 1 methanotrophs, belonging

to the gammaproteobacterial genera Methylomicrobium

and Methylobacter, were the main methane oxidizers.

Active aerobic methane oxidation, as well as archaeal

ammonium oxidation (ammonium oxidation to nitrite) and

denitrification (nitrite reduction to nitrous oxide) in the

water column of two low saline Ethiopian soda lakes was
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also shown by the successful amplification of mRNA for

particulate methane monooxygenase (lake Beseka),

ammonia monooxygenase (amoA) and nitrite reductase

(nirK; lake Arenguadi; Lanzen et al. 2013).

Cellular adaptations to high salt concentrations

and high pH values

Haloalkaliphilic bacteria have developed essential strate-

gies to adapt to the extreme haloalkaline conditions in soda

lakes (Padan et al. 2005; Slonczewski et al. 2009).

Although not much is known about the genetics of these

adaptations, some bioenergetic and structural adjustments

that ensure the maintenance of an intracellular neutral pH

and osmotic pressure have mainly been described in the

species Bacillus halodurans C125 and B. pseudofirmus

OF4 (Kitada et al. 1994; Ito et al. 2004; Janto et al. 2011).

The membrane structure of alkaliphiles remains stable over

a wide range of pH and salinity values and is poorly per-

meable to protons and sodium ions (van de Vossenberg

et al. 1999). Therefore, these microbes use transporter

proteins to mediate the transmembrane pH gradient (DpH)

and electric potential (DW). The intracellular pH is regu-

lated by several transporter mechanisms, one of which is

mediated by electrogenic antiporters that import protons to

the cytoplasm, whilst exporting a counterbalancing

monovalent cation: Na? or K? (Ito et al. 1997; Kitada et al.

1994; Hunte et al. 2005; Mesbah et al. 2009; Muyzer et al.

2011, 2012) (Fig. 4a1). It has been shown that Escherichia

coli cells require a Na?:H? exchange ratio of at least 1:2 to

support growth in alkaline environments (Pinner et al.

1993); however, the coupling stoichiometry of alkaliphiles

isolated from soda lakes has so far not been determined yet.

An alternative electro-neutral proton transporter has been

described in B. subtilis. It functions in carrying proton-

bound malate into the cell whilst cytoplasmic sodium-

bound lactate is exported (Wei et al. 2000) (Fig. 4a2).

Whether this transporter plays a potential role in the pH

homeostasis of haloalkaliphiles remains to be elucidated.

Another group of sodium transporters that are thought to

play a role in pH homeostasis and also in motility and

chemotaxis under alkaline conditions is the voltage-gated

Na? channel, encoded by ncbA in B. pseudofirmus OF4,

(Ito et al. 2004; Fujinami et al. 2007) (Fig. 4a3). These

channels can be co-localized with methylated chemotaxis

proteins (Fujinami et al. 2007). Chemotaxis is also medi-

ated through motility, which is sodium dependent in B.

pseudofirmus (Ito et al. 2005; Fujinami et al. 2009)

(Fig. 4a4). In the absence of sodium, potassium or rubid-

ium can replace the role of sodium (Terahara et al. 2012).

Last, an ATPase driven by a sodium motive force instead

of a proton motive force has been identified in extremely

salt-tolerant alkaliphilic clostridia Natranaerobius (Mesbah

and Wiegel 2011) (Fig. 4a5). Although such a protein has

not yet been discovered in haloalkaliphiles, it is conceiv-

able that they may possess a similar mechanism, which

utilizes the excess sodium and maintains a high trans-

membrane electric potential.

The high salinity in soda lakes also causes a high degree

of osmotic stress to haloalkaliphiles, requiring them to

synthesize osmoprotectants. In order to retain turgor pres-

sure, halophilic microorganisms are known to either use the

‘‘salt in cytoplasm’’ strategy, where intracellular KCl

concentrations are kept higher than the extracellular con-

centrations (Fig. 4b1), or to synthesize or accumulate

compatible solutes during which high concentrations of

neutral soluble organic molecules are stored in the cyto-

plasm (Rössler and Müller 2001) (Fig. 4b2). The com-

pounds glycine betaine, glutamine, proline, ectoine, and

hydroxyectoine have been found to play major roles as

compatible solutes in bacteria (Grammann et al. 2002;

Banciu et al. 2005; Hoffmann et al. 2012; Sorokin et al.

2013b). Extremely halo(alkali)philic Euryarchaeota pre-

dominantly utilize K? as an osmotic regulator (Oren 1999,

2011). These osmolytes do not play an active role in the

metabolism of the cell, but are pivotal to the cellular vol-

ume and homeostasis (Levy-Sakin et al. 2014), and have

been shown to stabilize membrane protein structures (Burg

and Ferraris 2008; Roychoudhury et al. 2013). Although

the ‘‘salt out’’ strategy of osmotic regulation is energeti-

cally more expensive than the ‘‘salt in’’ strategy, it allows

microorganisms with a highly efficient energy metabolism

to survive over larger salinity gradients (Oren 2011).

Structural adjustments within the cell membrane of

haloalkaliphilic prokaryotes include an increased level of

the neutral lipid squalene and the polar lipid cardiolipin in

the phospholipid bilayer (Angelini et al. 2012). Squalene

has also been found in the lipid bilayer membrane of the

bacterium Thioalkalivibrio versutus strain ALJ 15. Squa-

lene functions in combination with cyclopropane fatty

acids in the maintenance of their cellular membrane and

might prevent proton leakage (Banciu et al. 2005). Squa-

lene is physically positioned in the center of the membrane,

perpendicular to the two lipid layers that comprise the

membrane (Hauss et al. 2002) (Fig. 4c1). Another class of

lipids found in bacterial membranes (Thioalkalivibrio) is

cardiolipin (Banciu et al. 2005), whose negative charge

prevents protons from diffusing away from the cells (Ha-

ines and Dencher 2002) (Fig. 4c2). The membrane lipids of

extremely halophilic Euryarchaea contain a large amount

of diacidic phospholipids (Tenchov et al. 2006). Some

extremely halophilic prokaryotes, such as memebrs of

the Halobacteriaceae and Salinibacter, have membrane

surface layers that are strongly enriched in acidic amino

acids (Oren 2013). The proteins may enable the bacteria to
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influence the co-ordination of water molecules on their

surface membranes facilitating their solubility at higher salt

concentrations (Talon et al. 2014). Ecophysiological

experiments followed by transcriptome and proteome

analyses will offer an opportunity to provide additional

insight into the molecular mechanisms by which these

organisms adapt to extreme conditions of high pH and

salinity.

Perspectives

Traditionally, studies on microbial communities were

restricted to a few cultured isolates, whilst modern high-

throughput techniques now allow the study of microbial

community composition as a whole. Although a consider-

able number of cultured isolates has already been obtained

from soda lakes, culture-independent methods have

uncovered a much more diverse microbial community.

Future studies should attempt to isolate members of the

uncultured community (Alain and Querellou 2009). Meta-

omic approaches might help to facilitate the isolation of

microbes by providing insight into potential metabolisms,

such as for the isolation of the ammonium-oxidizing ar-

chaeon Nitrosopumilus maritimus (Könneke et al. 2005).

Amplicon sequencing of 16S rRNA gene fragments fol-

lowed by co-occurrence analysis might shed light onto the

different interactions of the community members (Barber-

án et al. 2012). The detection of functional genes and their

transcripts might reveal additional diversity and potential

niche differentiation.

Metagenomics can be applied to obtain a high-resolution

genetic inventory of the microbial community in soda

lakes. Such a genetic inventory can be used to explore the

overall metabolic capacity of the prokaryotic soda lake

communities. Other high-throughput techniques monitor

community-wide levels of gene-expression (meta-transcri-

ptomics; Carvalhais et al. 2012), protein abundance (meta-

proteomics; Verberkmoes et al. 2009), and metabolite

abundance (meta-metabolomics), thereby generating data

to facilitate systems biology approaches.

Several metabolic processes might be present in soda

lakes but have not yet been detected, such as anaerobic

methane oxidation and anaerobic ammonium-oxidation.

Furthermore, the importance of anaerobic polymer degra-

dation in sediments is not well understood and the contri-

bution of anoxygenic photosynthesis to primary production

might be underestimated. Nitrogen fixation at hypersaline

conditions is suspected to be limited to diazotrophic an-

oxygenic phototrophs and heterotrophs, but a comprehen-

sive study targeting nifH and nifD genes in soda lakes, and

distinguishing between the contribution of heterotrophs and

primary producing phototrophs, is still lacking. Single cell

techniques, like FISH-NanoSIMS (Dekas and Orphan

2011), may provide clear answers here. The effect of

salinity on other reactions in the nitrogen cycle, such as

nitrification, could be confirmed by focusing on the detec-

tion and quantification of amoA genes and their transcripts.

In conclusion, several questions regarding biogeo-

chemical cycles in soda lakes are still open. To obtain a

more comprehensive insight into the microbial diversity of

soda lakes, its role in biogeochemical cycles and the

molecular mechanisms by which the microorganisms adapt

to the extreme environmental conditions, we have to study

these habitats with a systems biology approach in which we

combine novel isolation methods with state-of-the-art

meta-omics techniques, and eventually with mathematical

modeling to predict the response of cells and communities

to environmental stimuli and to infer the interactions of co-

existing populations.
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