414 research outputs found

    Likely Role of APOBEC3G-Mediated G-to-A Mutations in HIV-1 Evolution and Drug Resistance

    Get PDF
    The role of APOBEC3 (A3) protein family members in inhibiting retrovirus infection and mobile element retrotransposition is well established. However, the evolutionary effects these restriction factors may have had on active retroviruses such as HIV-1 are less well understood. An HIV-1 variant that has been highly G-to-A mutated is unlikely to be transmitted due to accumulation of deleterious mutations. However, G-to-A mutated hA3G target sequences within which the mutations are the least deleterious are more likely to survive selection pressure. Thus, among hA3G targets in HIV-1, the ratio of nonsynonymous to synonymous changes will increase with virus generations, leaving a footprint of past activity. To study such footprints in HIV-1 evolution, we developed an in silico model based on calculated hA3G target probabilities derived from G-to-A mutation sequence contexts in the literature. We simulated G-to-A changes iteratively in independent sequential HIV-1 infections until a stop codon was introduced into any gene. In addition to our simulation results, we observed higher ratios of nonsynonymous to synonymous mutation at hA3G targets in extant HIV-1 genomes than in their putative ancestral genomes, compared to random controls, implying that moderate levels of A3G-mediated G-to-A mutation have been a factor in HIV-1 evolution. Results from in vitro passaging experiments of HIV-1 modified to be highly susceptible to hA3G mutagenesis verified our simulation accuracy. We also used our simulation to examine the possible role of A3G-induced mutations in the origin of drug resistance. We found that hA3G activity could have been responsible for only a small increase in mutations at known drug resistance sites and propose that concerns for increased resistance to other antiviral drugs should not prevent Vif from being considered a suitable target for development of new drugs

    Potential health impacts of heavy metals on HIV-infected population in USA.

    Get PDF
    Noninfectious comorbidities such as cardiovascular diseases have become increasingly prevalent and occur earlier in life in persons with HIV infection. Despite the emerging body of literature linking environmental exposures to chronic disease outcomes in the general population, the impacts of environmental exposures have received little attention in HIV-infected population. The aim of this study is to investigate whether individuals living with HIV have elevated prevalence of heavy metals compared to non-HIV infected individuals in United States. We used the National Health and Nutrition Examination Survey (NHANES) 2003-2010 to compare exposures to heavy metals including cadmium, lead, and total mercury in HIV infected and non-HIV infected subjects. In this cross-sectional study, we found that HIV-infected individuals had higher concentrations of all heavy metals than the non-HIV infected group. In a multivariate linear regression model, HIV status was significantly associated with increased blood cadmium (p=0.03) after adjusting for age, sex, race, education, poverty income ratio, and smoking. However, HIV status was not statistically associated with lead or mercury levels after adjusting for the same covariates. Our findings suggest that HIV-infected patients might be significantly more exposed to cadmium compared to non-HIV infected individuals which could contribute to higher prevalence of chronic diseases among HIV-infected subjects. Further research is warranted to identify sources of exposure and to understand more about specific health outcomes

    Restoring Akt1 activity in outgrowth endothelial cells from south asian men rescues vascular reparative potential

    Get PDF
    Recent data suggest reduced indices of vascular repair in South Asian men, a group at increased risk of cardiovascular events. Outgrowth endothelial cells (OEC) represent an attractive tool to study vascular repair in humans and may offer potential in cell-based repair therapies. We aimed to define and manipulate potential mechanisms of impaired vascular repair in South Asian (SA) men. In vitro and in vivo assays of vascular repair and angiogenesis were performed using OEC derived from SA men and matched European controls, prior defining potentially causal molecular mechanisms. SA OEC exhibited impaired colony formation, migration, and in vitro angiogenesis, associated with decreased expression of the proangiogenic molecules Akt1 and endothelial nitric oxide synthase (eNOS). Transfusion of European OEC into immunodeficient mice after wire-induced femoral artery injury augmented reendothelialization, in contrast with SA OEC and vehicle; SA OEC also failed to promote angiogenesis after induction of hind limb ischemia. Expression of constitutively active Akt1 (E17KAkt), but not green fluorescent protein control, in SA OEC increased in vitro angiogenesis, which was abrogated by a NOS antagonist. Moreover, E17KAkt expressing SA OEC promoted re-endothelialization of wire-injured femoral arteries, and perfusion recovery of ischemic limbs, to a magnitude comparable with nonmanipulated European OEC. Silencing Akt1 in European OEC recapitulated the functional deficits noted in SA OEC. Reduced signaling via the Akt/eNOS axis is causally linked with impaired OEC-mediated vascular repair in South Asian men. These data prove the principle of rescuing marked reparative dysfunction in OEC derived from these men.This work was supported by the British Heart Foundation, London, UK, and the Diabetes Research and Wellness Foundation, Portsmouth, UK

    High blood pressure, antihypertensive medication and lung function in a general adult population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies showed that blood pressure and lung function are associated. Additionally, a potential effect of antihypertensive medication, especially beta-blockers, on lung function has been discussed. However, side effects of beta-blockers have been investigated mainly in patients with already reduced lung function. Thus, aim of this analysis is to determine whether hypertension and antihypertensive medication have an adverse effect on lung function in a general adult population.</p> <p>Methods</p> <p>Within the population-based KORA F4 study 1319 adults aged 40-65 years performed lung function tests and blood pressure measurements. Additionally, information on anthropometric measurements, medical history and use of antihypertensive medication was available. Multivariable regression models were applied to study the association between blood pressure, antihypertensive medication and lung function.</p> <p>Results</p> <p>High blood pressure as well as antihypertensive medication were associated with lower forced expiratory volume in one second (p = 0.02 respectively p = 0.05; R<sup>2</sup>: 0.65) and forced vital capacity values (p = 0.01 respectively p = 0.05, R<sup>2</sup>: 0.73). Furthermore, a detailed analysis of antihypertensive medication pointed out that only the use of beta-blockers was associated with reduced lung function, whereas other antihypertensive medication had no effect on lung function. The adverse effect of beta-blockers was significant for forced vital capacity (p = 0.04; R<sup>2</sup>: 0.65), while the association with forced expiratory volume in one second showed a trend toward significance (p = 0.07; R<sup>2</sup>: 0.73). In the same model high blood pressure was associated with reduced forced vital capacity (p = 0.01) and forced expiratory volume in one second (p = 0.03) values, too.</p> <p>Conclusion</p> <p>Our analysis indicates that both high blood pressure and the use of beta-blockers, but not the use of other antihypertensive medication, are associated with reduced lung function in a general adult population.</p

    Cheating the locals: invasive mussels steal and benefit from the cooling effect of indigenous mussels

    Get PDF
    The indigenous South African mussel Perna perna gapes during periods of aerial exposure to maintain aerobic respiration. This behaviour has no effect on the body temperatures of isolated individuals, but when surrounded by conspecifics, beneficial cooling effects of gaping emerge. It is uncertain, however, whether the presence of the invasive mussel Mytilus galloprovincialis limits the ability of P. perna for collective thermoregulation. We investigated whether varying densities of P. perna and M. galloprovincialis influences the thermal properties of both natural and artificial mussel beds during periods of emersion. Using infrared thermography, body temperatures of P. perna within mixed artificial beds were shown to increase faster and reach higher temperatures than individuals in conspecific beds, indicating that the presence of M. galloprovincialis limits the group cooling effects of gaping. In contrast, body temperatures of M. galloprovincialis within mixed artificial mussel beds increased slower and exhibited lower temperatures than for individuals in beds comprised entirely of M. galloprovincialis. Interestingly, differences in bed temperatures and heating rates were largely dependent on the size of mussels, with beds comprised of larger individuals experiencing less thermal stress irrespective of species composition. The small-scale patterns of thermal stress detected within manipulated beds were not observed within naturally occurring mixed mussel beds. We propose that small-scale differences in topography, size-structure, mussel bed size and the presence of organisms encrusting the mussel shells mask the effects of gaping behaviour within natural mussel beds. Nevertheless, the results from our manipulative experiment indicate that the invasive species M. galloprovincialis steals thermal properties as well as resources from the indigenous mussel P. perna. This may have significant implications for predicting how the co-existence of these two species may change as global temperatures continue to rise

    Orai1 Channel Inhibition Preserves Left Ventricular Systolic Function and Normal Ca2+ Handling After Pressure Overload

    Get PDF
    Background: Orai1 is a critical ion channel subunit, best recognized as a mediator of storeoperated Ca2+ entry (SOCE) in non-excitable cells. SOCE has recently emerged as a key contributor of cardiac hypertrophy and heart failure but the relevance of Orai1 is still unclear. Methods: To test the role of these Orai1 channels in the cardiac pathophysiology, a transgenic mouse was generated with cardiomyocyte-specific expression of an ion pore-disruptive Orai1R91W mutant (C-dnO1). Synthetic chemistry and channel screening strategies were used to develop JPIII, a small-molecule Orai1 channel inhibitor suitable for in vivo delivery. Results: Adult mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and reduced ventricular function associated with increased Orai1 expression and Orai1-dependent SOCE (assessed by Mn2+ influx). C-dnO1 mice displayed normal cardiac electromechanical function and cellular excitation-contraction coupling despite reduced Orai1-dependent SOCE. 5 weeks after TAC, C-dnO1 mice were protected from systolic dysfunction (assessed by preserved left ventricular fractional shortening and ejection fraction) even if increased cardiac mass and pro-hypertrophic markers induction were observed. This is correlated with a protection from TAC-induced cellular Ca2+ signaling alterations (increased SOCE, decreased [Ca2+]i transients amplitude and decay rate, lower SR Ca2+ load and depressed cellular contractility) and SERCA2a downregulation in ventricular cardiomyocytes from C-dnO1 mice, associated with blunted Pyk2 signaling. There was also less fibrosis in heart sections from CdnO1 mice after TAC. Moreover, 3 weeks treatment with JPIII following 5 weeks of TAC confirmed the translational relevance of an Orai1 inhibition strategy during hypertrophic insult. Conclusions: The findings suggest a key role of cardiac Orai1 channels and the potential for Orai1 channel inhibitors as inotropic therapies for maintaining contractility reserve after hypertrophic stress

    Methods for the synthesis of qualitative research: a critical review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, a growing number of methods for synthesising qualitative research have emerged, particularly in relation to health-related research. There is a need for both researchers and commissioners to be able to distinguish between these methods and to select which method is the most appropriate to their situation.</p> <p>Discussion</p> <p>A number of methodological and conceptual links between these methods were identified and explored, while contrasting epistemological positions explained differences in approaches to issues such as quality assessment and extent of iteration. Methods broadly fall into 'realist' or 'idealist' epistemologies, which partly accounts for these differences.</p> <p>Summary</p> <p>Methods for qualitative synthesis vary across a range of dimensions. Commissioners of qualitative syntheses might wish to consider the kind of product they want and select their method – or type of method – accordingly.</p
    • …
    corecore