1,935 research outputs found
Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphization
We have used a family of Zr-based metal-organic frameworks (MOFs) with different functionalized (bromo, nitro and amino) and extended linkers for drug delivery. We loaded the materials with the fluorescent model molecule calcein and the anticancer drug α-cyano-4-hydroxycinnamic acid (α-CHC), and consequently performed a mechanical amorphization process to attempt to control the delivery of guest molecules. Our analysis revealed that the loading values of both molecules were higher for the MOFs containing unfunctionalized linkers. Confocal microscopy showed that all the materials were able to penetrate into cells, and the therapeutic effect of α-CHC on HeLa cells was enhanced when loaded (20 wt%) into the MOF with the longest linker. On one hand, calcein release required up to 3 days from the crystalline form for all the materials. On the other hand, the amorphous counterparts containing the bromo and nitro functional groups released only a fraction of the total loaded amount, and in the case of the amino-MOF a slow and progressive release was successfully achieved for 15 days. In the case of the materials loaded with α-CHC, no difference was observed between the crystalline and amorphous form of the materials. These results highlight the necessity of a balance between the pore size of the materials and the size of the guest molecules to accomplish a successful and efficient sustained release using this mechanical ball-milling process. Additionally, the endocytic pathway used by cells to internalize these MOFs may lead to diverse final cellular locations and consequently, different therapeutic effects. Understanding these cellular mechanisms will drive the design of more effective MOFs for drug delivery applications.C.A.O. thanks Becas Chile and the Cambridge Trust for funding. D.F.J. thanks the Royal Society (UK) for funding through a University Research Fellowship. RSF thanks the Royal Society for receipt of a University Research Fellowship and the EPSRC (EP/L004461/1) and The University of Glasgow for funding. A.K.C is grateful to the European Research Council for an Advanced Investigator Award
Prediction of peptide and protein propensity for amyloid formation
Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation
Coexistence between renal cell cancer and Hodgkin's lymphoma: A rare coincidence
BACKGROUND: Renal cell carcinoma is the most common kidney tumor in adults and accounts for approximately 3% of adult malignancies. An increased incidence of second malignancies has been well documented in a number of different disorders, such as head and neck tumors, and hairy cell leukemia. In addition, treatment associated second malignancies (usually leukemias and lymphomas but also solid tumors) have been described in long term survivors of Hodgkin's lymphoma (HL), Non Hodgkin's lymphoma and in various pediatric tumors. CASE PRESENTATION: We present the case of a 66 year-old woman with abdominal pain and dyspnea. We performed a thorax CT scan that showed lymph nodes enlargement and subsequently by presence of abdominal pain was performed an abdominal and pelvis CT scan that showed a right kidney tumor of 4 × 5 cms besides of abdominal lymph nodes enlargement. A radical right nephrectomy was designed and Hodgkin's lymphoma was diagnosed in the abdominal lymph nodes while renal cell tumor exhibited a renal cell cancer. Patient received EVA protocol achieving complete response. CONCLUSION: We described the first case reported in the medical literature of the coexistence between Hodgkin's lymphoma and renal cell cancer. Previous reports have shown the relationship of lymphoid neoplasms with solid tumors, but they have usually described secondary forms of cancer related to chemotherapy
Photon echo studies of photosynthetic light harvesting
The broad linewidths in absorption spectra of photosynthetic complexes obscure information related to their structure and function. Photon echo techniques represent a powerful class of time-resolved electronic spectroscopy that allow researchers to probe the interactions normally hidden under broad linewidths with sufficient time resolution to follow the fastest energy transfer events in light harvesting. Here, we outline the technical approach and applications of two types of photon echo experiments: the photon echo peak shift and two-dimensional (2D) Fourier transform photon echo spectroscopy. We review several extensions of these techniques to photosynthetic complexes. Photon echo peak shift spectroscopy can be used to determine the strength of coupling between a pigment and its surrounding environment including neighboring pigments and to quantify timescales of energy transfer. Two-dimensional spectroscopy yields a frequency-resolved map of absorption and emission processes, allowing coupling interactions and energy transfer pathways to be viewed directly. Furthermore, 2D spectroscopy reveals structural information such as the relative orientations of coupled transitions. Both classes of experiments can be used to probe the quantum mechanical nature of photosynthetic light-harvesting: peak shift experiments allow quantification of correlated energetic fluctuations between pigments, while 2D techniques measure quantum beating directly, both of which indicate the extent of quantum coherence over multiple pigment sites in the protein complex. The mechanistic and structural information obtained by these techniques reveals valuable insights into the design principles of photosynthetic light-harvesting complexes, and a multitude of variations on the methods outlined here
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Loss of p53 results in protracted electrographic seizures and development of an aggravated epileptic phenotype following status epilepticus
The p53 tumor suppressor is a multifunctional protein, which regulates cell cycle, differentiation, DNA repair and apoptosis. Experimental seizures up-regulate p53 in the brain, and acute seizure-induced neuronal death can be reduced by genetic deletion or pharmacologic inhibition of p53. However, few long-term functional consequences of p53 deficiency have been explored. Here, we investigated the development of epilepsy triggered by status epilepticus in wild-type and p53-deficient mice. Analysis of electroencephalogram (EEG) recordings during status epilepticus induced by intra-amygdala kainic acid (KA) showed that seizures lasted significantly longer in p53-deficient mice compared with wild-type animals. Nevertheless, neuronal death in the hippocampal CA3 subfield and the neocortex was significantly reduced at 72 h in p53-deficient mice. Long-term continuous EEG telemetry recordings after status epilepticus determined that the sum duration of spontaneous seizures was significantly longer in p53-deficient compared with wild-type mice. Hippocampal damage and neuropeptide Y distribution at the end of chronic recordings was found to be similar between p53-deficient and wild-type mice. The present study identifies protracted KA-induced electrographic status as a novel outcome of p53 deficiency and shows that the absence of p53 leads to an exacerbated epileptic phenotype. Accordingly, targeting p53 to protect against status epilepticus or related neurologic insults may be offset by deleterious consequences of reduced p53 function during epileptogenesis or in chronic epilepsy
Cardiovascular risk assessment - From individual risk prediction to estimation of global risk and change in risk in the population
Cardiovascular disease is the most common cause of death and risk prediction formulae such as the Framingham Risk Score have been developed to easily identify patients at high risk that may require therapeutic interventions. Using cardiovascular risk formulae at a population level to estimate and compare average cardiovascular risk among groups has been recently proposed as a way to facilitate surveillance of net cardiovascular risk and target public health interventions. Risk prediction formulas may help to compare interventions that cause effects of different magnitudes and directions in several cardiovascular risk factors, because these formulas assess the net change in risk using easily obtainable clinical variables. Because of conflicting data estimates of the incidence and prevalence of cardiovascular disease, risk prediction formulae may be a useful tool to estimate such risk at a population level
Reduced Mature MicroRNA Levels in Association with Dicer Loss in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis
Hippocampal sclerosis (HS) is a common pathological finding in patients with temporal lobe epilepsy (TLE) and is associated with altered expression of genes controlling neuronal excitability, glial function, neuroinflammation and cell death. MicroRNAs (miRNAs), a class of small non-coding RNAs, function as post-transcriptional regulators of gene expression and are critical for normal brain development and function. Production of mature miRNAs requires Dicer, an RNAase III, loss of which has been shown to cause neuronal and glial dysfunction, seizures, and neurodegeneration. Here we investigated miRNA biogenesis in hippocampal and neocortical resection specimens from pharmacoresistant TLE patients and autopsy controls. Western blot analysis revealed protein levels of Dicer were significantly lower in certain TLE patients with HS. Dicer levels were also reduced in the hippocampus of mice subject to experimentally-induced epilepsy. To determine if Dicer loss was associated with altered miRNA processing, we profiled levels of 380 mature miRNAs in control and TLE-HS samples. Expression of nearly 200 miRNAs was detected in control human hippocampus. In TLE-HS samples there was a large-scale reduction of miRNA expression, with 51% expressed at lower levels and a further 24% not detectable. Primary transcript (pri-miRNAs) expression levels for several tested miRNAs were not different between control and TLE-HS samples. These findings suggest loss of Dicer and failure of mature miRNA expression may be a feature of the pathophysiology of HS in patients with TLE
Symptom Remission and Brain Cortical Networks at First Clinical Presentation of Psychosis: The OPTiMiSE Study
Individuals with psychoses have brain alterations, particularly in frontal and temporal cortices, that may be particularly prominent, already at illness onset, in those more likely to have poorer symptom remission following treatment with the first antipsychotic. The identification of strong neuroanatomical markers of symptom remission could thus facilitate stratification and individualized treatment of patients with schizophrenia. We used magnetic resonance imaging at baseline to examine brain regional and network correlates of subsequent symptomatic remission in 167 medication-naïve or minimally treated patients with first-episode schizophrenia, schizophreniform disorder, or schizoaffective disorder entering a three-phase trial, at seven sites. Patients in remission at the end of each phase were randomized to treatment as usual, with or without an adjunctive psycho-social intervention for medication adherence. The final follow-up visit was at 74 weeks. A total of 108 patients (70%) were in remission at Week 4, 85 (55%) at Week 22, and 97 (63%) at Week 74. We found no baseline regional differences in volumes, cortical thickness, surface area, or local gyrification between patients who did or did not achieved remission at any time point. However, patients not in remission at Week 74, at baseline showed reduced structural connectivity across frontal, anterior cingulate, and insular cortices. A similar pattern was evident in patients not in remission at Week 4 and Week 22, although not significantly. Lack of symptom remission in first-episode psychosis is not associated with regional brain alterations at illness onset. Instead, when the illness becomes a stable entity, its association with the altered organization of cortical gyrification becomes more defined
PDF dependence of Higgs cross sections at the Tevatron and LHC: response to recent criticism
We respond to some criticism questioning the validity of the current Standard
Model Higgs exclusion limits at the Tevatron, due to the significant dependence
of the dominant production cross section from gluon-gluon fusion on the choice
of parton distribution functions (PDFs) and the strong coupling (alpha_S). We
demonstrate the ability of the Tevatron jet data to discriminate between
different high-x gluon distributions, performing a detailed quantitative
comparison to show that fits not explicitly including these data fail to give a
good description. In this context we emphasise the importance of the consistent
treatment of luminosity uncertainties. We comment on the values of alpha_S
obtained from fitting deep-inelastic scattering data, particularly the
fixed-target NMC data, and we show that jet data are needed for stability. We
conclude that the Higgs cross-section uncertainties due to PDFs and alpha_S
currently used by the Tevatron and LHC experiments are not significantly
underestimated, contrary to some recent claims.Comment: 44 pages, 19 figures. v2: version published in JHEP (paragraph added
at bottom of p.15
- …