950 research outputs found

    Optically trapped bacteria pairs reveal discrete motile response to control aggregation upon cell–cell approach

    Get PDF
    Aggregation of bacteria plays a key role in the formation of many biofilms. The critical first step is cell–cell approach, and yet the ability of bacteria to control the likelihood of aggregation during this primary phase is unknown. Here, we use optical tweezers to measure the force between isolated Bacillus subtilis cells during approach. As we move the bacteria towards each other, cell motility (bacterial swimming) initiates the generation of repulsive forces at bacterial separations of ~3 μm. Moreover, the motile response displays spatial sensitivity with greater cell–cell repulsion evident as inter-bacterial distances decrease. To examine the environmental influence on the inter-bacterial forces, we perform the experiment with bacteria suspended in Tryptic Soy Broth, NaCl solution and deionised water. Our experiments demonstrate that repulsive forces are strongest in systems that inhibit biofilm formation (Tryptic Soy Broth), while attractive forces are weak and rare, even in systems where biofilms develop (NaCl solution). These results reveal that bacteria are able to control the likelihood of aggregation during the approach phase through a discretely modulated motile response. Clearly, the force-generating motility we observe during approach promotes biofilm prevention, rather than biofilm formation

    Ovarian cancer symptom awareness and anticipated delayed presentation in a population sample

    Get PDF
    Background: While ovarian cancer is recognised as having identifiable early symptoms, understanding of the key determinants of symptom awareness and early presentation is limited. A population-based survey of ovarian cancer awareness and anticipated delayed presentation with symptoms was conducted as part of the International Cancer Benchmarking Partnership (ICBP). Methods: Women aged over 50 years were recruited using random probability sampling (n = 1043). Computer-assisted telephone interviews were used to administer measures including ovarian cancer symptom recognition, anticipated time to presentation with ovarian symptoms, health beliefs (perceived risk, perceived benefits/barriers to early presentation, confidence in symptom detection, ovarian cancer worry), and demographic variables. Logistic regression analysis was used to identify the contribution of independent variables to anticipated presentation (categorised as < 3 weeks or ≥ 3 weeks). Results: The most well-recognised symptoms of ovarian cancer were post-menopausal bleeding (87.4%), and persistent pelvic (79.0%) and abdominal (85.0%) pain. Symptoms associated with eating difficulties and changes in bladder/bowel habits were recognised by less than half the sample. Lower symptom awareness was significantly associated with older age (p ≤ 0.001), being single (p ≤ 0.001), lower education (p ≤ 0.01), and lack of personal experience of ovarian cancer (p ≤ 0.01). The odds of anticipating a delay in time to presentation of ≥ 3 weeks were significantly increased in women educated to degree level (OR = 2.64, 95% CI 1.61 – 4.33, p ≤ 0.001), women who reported more practical barriers (OR = 1.60, 95% CI 1.34 – 1.91, p ≤ 0.001) and more emotional barriers (OR = 1.21, 95% CI 1.06 – 1.40, p ≤ 0.01), and those less confident in symptom detection (OR = 0.56, 95% CI 0.42 – 0.73, p ≤ 0.001), but not in those who reported lower symptom awareness (OR = 0.99, 95% CI 0.91 – 1.07, p = 0.74). Conclusions: Many symptoms of ovarian cancer are not well-recognised by women in the general population. Evidence-based interventions are needed not only to improve public awareness but also to overcome the barriers to recognising and acting on ovarian symptoms, if delays in presentation are to be minimised

    Mosquito Abundance, Bed net Coverage and Other Factors Associated with Variations in Sporozoite Infectivity Rates in Four Villages of Rural Tanzania.

    Get PDF
    Entomological surveys are of great importance in decision-making processes regarding malaria control strategies because they help to identify associations between vector abundance both species-specific ecology and disease intervention factors associated with malaria transmission. Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch methods. In each village, ten paired houses were selected for mosquitoes sampling. Sampling was done in fortnight case and study was undertaken for six months in both Kilimanjaro (Northern Tanzania) and Dodoma (Central Tanzania) regions. A total of 6,883 mosquitoes were collected including: 5,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P < 0.001) and there was a significant difference in sporozoite rates between households with and without bed nets in these four villages (P < 0.001). Malaria remains a major problem in the study areas characterized as low transmission sites. Further studies are required to establish the annual entomological inoculation rates and to observe the annual parasitaemia dynamics in these communities. Outdoor mosquitoes collection should also be considered

    Glycogen Synthase Kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells

    Get PDF
    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation

    Cough quality in children: a comparison of subjective vs. bronchoscopic findings

    Get PDF
    BACKGROUND: Cough is the most common symptom presenting to doctors. The quality of cough (productive or wet vs dry) is used clinically as well as in epidemiology and clinical research. There is however no data on the validity of cough quality descriptors. The study aims were to compare (1) cough quality (wet/dry and brassy/non-brassy) to bronchoscopic findings of secretions and tracheomalacia respectively and, (2) parent's vs clinician's evaluation of the cough quality (wet/dry). METHODS: Cough quality of children (without a known underlying respiratory disease) undergoing elective bronchoscopy was independently evaluated by clinicians and parents. A 'blinded' clinician scored the secretions seen at bronchoscopy on pre-determined criteria and graded (1 to 6). Kappa (K) statistics was used for agreement, and inter-rater and intra-rater agreement examined on digitally recorded cough. A receiver operating characteristic (ROC) curve was used to determine if cough quality related to amount of airway secretions present at bronchoscopy. RESULTS: Median age of the 106 children (62 boys, 44 girls) enrolled was 2.6 years (IQR 5.7). Parent's assessment of cough quality (wet/dry) agreed with clinicians' (K = 0.75, 95%CI 0.58–0.93). When compared to bronchoscopy (bronchoscopic secretion grade 4), clinicians' cough assessment had the highest sensitivity (0.75) and specificity (0.79) and were marginally better than parent(s). The area under the ROC curve was 0.85 (95%CI 0.77–0.92). Intra-observer (K = 1.0) and inter-clinician agreement for wet/dry cough (K = 0.88, 95%CI 0.82–0.94) was very good. Weighted K for inter-rater agreement for bronchoscopic secretion grades was 0.95 (95%CI 0.87–1). Sensitivity and specificity for brassy cough (for tracheomalacia) were 0.57 and 0.81 respectively. K for both intra and inter-observer clinician agreement for brassy cough was 0.79 (95%CI 0.73–0.86). CONCLUSIONS: Dry and wet cough in children, as determined by clinicians and parents has good clinical validity. Clinicians should however be cognisant that children with dry cough may have minimal to mild airway secretions. Brassy cough determined by respiratory physicians is highly specific for tracheomalacia

    Water-Borne Cues of a Non-Indigenous Seaweed Mediate Grazer-Deterrent Responses in Native Seaweeds, but Not Vice Versa

    Get PDF
    Plants optimise their resistance to herbivores by regulating deterrent responses on demand. Induction of anti-herbivory defences can occur directly in grazed plants or from emission of risk cues to the environment, which modifies interactions of adjacent plants with, for instance, their consumers. This study confirmed the induction of anti-herbivory responses by water-borne risk cues between adjoining con-specific seaweeds and firstly examined whether plant-plant signalling also exists among adjacent hetero-specific seaweeds. Furthermore, differential abilities and geographic variation in plant-plant signalling by a non-indigenous seaweed as well as native seaweeds were assessed. Twelve-day induction experiments using the non-indigenous seaweed Sargassum muticum were conducted in the laboratory in Portugal and Germany with one local con-familiar (Portugal: Cystoseira humilis, Germany: Halidrys siliquosa) and hetero-familiar native species (Portugal: Fucus spiralis, Germany: F. vesiculosus). All seaweeds were grazed by a local isopod species (Portugal: Stenosoma nadejda, Germany: Idotea baltica) and were positioned upstream of con- and hetero-specific seaweeds. Grazing-induced modification in seaweed traits were tested in three-day feeding assays between cue-exposed and cue-free ( = control) pieces of both fresh and reconstituted seaweeds. Both Fucus species reduced their palatability when positioned downstream of isopod-grazed con-specifics. Yet, the palatability of non-indigenous S. muticum remained constant in the presence of upstream grazed con-specifics and native hetero-specifics. In contrast, both con-familiar (but neither hetero-familiar) native species reduced palatability when located downstream of grazed S. muticum. Similar patterns of grazer-deterrent responses to water-borne cues were observed on both European shores, and were almost identical between assays using fresh and reconstituted seaweeds. Hence, seaweeds may use plant-plant signalling to optimise chemical resistance to consumers, though this ability appeared to be species-specific. Furthermore, this study suggests that native species may benefit more than a non-indigenous species from water-borne cue mediated reduction in consumption as only natives responded to signals emitted by hetero-specifics

    The effects of spatial population dataset choice on estimates of population at risk of disease

    Get PDF
    Background: The spatial modeling of infectious disease distributions and dynamics is increasingly being undertaken for health services planning and disease control monitoring, implementation, and evaluation. Where risks are heterogeneous in space or dependent on person-to-person transmission, spatial data on human population distributions are required to estimate infectious disease risks, burdens, and dynamics. Several different modeled human population distribution datasets are available and widely used, but the disparities among them and the implications for enumerating disease burdens and populations at risk have not been considered systematically. Here, we quantify some of these effects using global estimates of populations at risk (PAR) of P. falciparum malaria as an example.Methods: The recent construction of a global map of P. falciparum malaria endemicity enabled the testing of different gridded population datasets for providing estimates of PAR by endemicity class. The estimated population numbers within each class were calculated for each country using four different global gridded human population datasets: GRUMP (~1 km spatial resolution), LandScan (~1 km), UNEP Global Population Databases (~5 km), and GPW3 (~5 km). More detailed assessments of PAR variation and accuracy were conducted for three African countries where census data were available at a higher administrative-unit level than used by any of the four gridded population datasets.Results: The estimates of PAR based on the datasets varied by more than 10 million people for some countries, even accounting for the fact that estimates of population totals made by different agencies are used to correct national totals in these datasets and can vary by more than 5% for many low-income countries. In many cases, these variations in PAR estimates comprised more than 10% of the total national population. The detailed country-level assessments suggested that none of the datasets was consistently more accurate than the others in estimating PAR. The sizes of such differences among modeled human populations were related to variations in the methods, input resolution, and date of the census data underlying each dataset. Data quality varied from country to country within the spatial population datasets.Conclusions: Detailed, highly spatially resolved human population data are an essential resource for planning health service delivery for disease control, for the spatial modeling of epidemics, and for decision-making processes related to public health. However, our results highlight that for the low-income regions of the world where disease burden is greatest, existing datasets display substantial variations in estimated population distributions, resulting in uncertainty in disease assessments that utilize them. Increased efforts are required to gather contemporary and spatially detailed demographic data to reduce this uncertainty, particularly in Africa, and to develop population distribution modeling methods that match the rigor, sophistication, and ability to handle uncertainty of contemporary disease mapping and spread modeling. In the meantime, studies that utilize a particular spatial population dataset need to acknowledge the uncertainties inherent within them and consider how the methods and data that comprise each will affect conclusions. © 2011 Tatem et al; licensee BioMed Central Ltd.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Shifting suitability for malaria vectors across Africa with warming climates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Climates are changing rapidly, producing warm climate conditions globally not previously observed in modern history. Malaria is of great concern as a cause of human mortality and morbidity, particularly across Africa, thanks in large part to the presence there of a particularly competent suite of mosquito vector species.</p> <p>Methods</p> <p>I derive spatially explicit estimates of human populations living in regions newly suitable climatically for populations of two key <it>Anopheles gambiae </it>vector complex species in Africa over the coming 50 years, based on ecological niche model projections over two global climate models, two scenarios of climate change, and detailed spatial summaries of human population distributions.</p> <p>Results</p> <p>For both species, under all scenarios, given the changing spatial distribution of appropriate conditions and the current population distribution, the models predict a reduction of 11.3–30.2% in the percentage of the overall population living in areas climatically suitable for these vector species in coming decades, but reductions and increases are focused in different regions: malaria vector suitability is likely to decrease in West Africa, but increase in eastern and southern Africa.</p> <p>Conclusion</p> <p>Climate change effects on African malaria vectors shift their distributional potential from west to east and south, which has implications for overall numbers of people exposed to these vector species. Although the total is reduced, malaria is likely to pose novel public health problems in areas where it has not previously been common.</p

    Estimating the Global Clinical Burden of Plasmodium falciparum Malaria in 2007

    Get PDF
    Simon Hay and colleagues derive contemporary estimates of the global clinical burden of Plasmodium falciparum malaria (the deadliest form of malaria) using cartography-based techniques
    corecore