1,852 research outputs found

    Constraining General Two Higgs Doublet Models by the Evolution of Yukawa Couplings

    Full text link
    We study how general two Higgs doublet models can be constrained by considering their properties under renormalization group evolution of the Yukawa couplings. We take into account both the appearance of a Landau pole as well as off-diagonal Yukawa couplings leading to flavour changing neutral currents in violation with experimental constraints at the electroweak scale. We find that the latter condition can be used to limit the amount of Z2 symmetry breaking allowed in a given model.Comment: 28 pages, 10 figures, added discussion of evolution from high to low scales, to be published in JHE

    Systematic In Vitro Evaluation of a Library of Approved and Pharmacologically Active Compounds for the Identification of Novel Candidate Drugs for KMT2A-Rearranged Leukemia

    Full text link
    Patients whose leukemias harbor a rearrangement of the Mixed Lineage Leukemia (MLL/KMT2A) gene have a poor prognosis, especially when the disease strikes in infants. The poor clinical outcome linked to this aggressive disease and the detrimental treatment side-effects, particularly in children, warrant the urgent development of more effective and cancer-selective therapeutics. The aim of this study was to identify novel candidate compounds that selectively target KMT2A-rearranged (KMT2A-r) leukemia cells. A library containing 3707 approved drugs and pharmacologically active compounds was screened for differential activity against KMT2A-r leukemia cell lines versus KMT2A-wild type (KMT2A-wt) leukemia cell lines, solid tumor cells and non-malignant cells by cell-based viability assays. The screen yielded SID7969543, an inhibitor of transcription factor Nuclear Receptor Subfamily 5 Group A Member 1 (NR5A1), that limited the viability of 7 out of 11 KMT2A-r leukemia cell lines including 5 out of 7 lines derived from infants, without affecting KMT2A-wt leukemia cells, solid cancer lines, non-malignant cell lines, or peripheral blood mononuclear cells from healthy controls. The compound also significantly inhibited growth of leukemia cell lines with a CALM-AF10 translocation, which defines a highly aggressive leukemia subtype that shares common underlying leukemogenic mechanisms with KMT2A-r leukemia. SID7969543 decreased KMT2A-r leukemia cell viability by inducing caspase-dependent apoptosis within hours of treatment and demonstrated synergy with established chemotherapeutics used in the treatment of high-risk leukemia. Thus, SID7969543 represents a novel candidate agent with selective activity against CALM-AF10 translocated and KMT2A-r leukemias that warrants further investigation

    Size constancy in bat biosonar?

    Get PDF
    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats

    Cosmic Flows on 100 Mpc/h Scales: Standardized Minimum Variance Bulk Flow, Shear and Octupole Moments

    Get PDF
    The low order moments, such as the bulk flow and shear, of the large scale peculiar velocity field are sensitive probes of the matter density fluctuations on very large scales. In practice, however, peculiar velocity surveys are usually sparse and noisy, which can lead to the aliasing of small scale power into what is meant to be a probe of the largest scales. Previously, we developed an optimal ``minimum variance'' (MV) weighting scheme, designed to overcome this problem by minimizing the difference between the measured bulk flow (BF) and that which would be measured by an ideal survey. Here we extend this MV analysis to include the shear and octupole moments, which are designed to have almost no correlations between them so that they are virtually orthogonal. We apply this MV analysis to a compilation of all major peculiar velocity surveys, consisting of 4536 measurements. Our estimate of the BF on scales of ~ 100 Mpc/h has a magnitude of |v|= 416 +/- 78 km/s towards Galactic l = 282 degree +/- 11 degree and b = 6 degree +/- 6 degree. This result is in disagreement with LCDM with WMAP5 cosmological parameters at a high confidence level, but is in good agreement with our previous MV result without an orthogonality constraint, showing that the shear and octupole moments did not contaminate the previous BF measurement. The shear and octupole moments are consistent with WMAP5 power spectrum, although the measurement noise is larger for these moments than for the BF. The relatively low shear moments suggest that the sources responsible for the BF are at large distances.Comment: 13 Pages, 7 figures, 4 tables. Some changes to reflect the published versio

    Beautiful Mirrors at the LHC

    Get PDF
    We explore the "Beautiful Mirrors" model, which aims to explain the measured value of AFBbA^b_{FB}, discrepant at the 2.9σ2.9\sigma level. This scenario introduces vector-like quarks which mix with the bottom, subtly affecting its coupling to the ZZ. The spectrum of the new particles consists of two bottom-like quarks and a charge -4/3 quark, all of which have electroweak interactions with the third generation. We explore the phenomenology and discovery reach for these new particles at the LHC, exploring single mirror quark production modes whose rates are proportional to the same mixing parameters which resolve the AFBbA_{FB}^b anomaly. We find that for mirror quark masses 500GeV,a14TeVLHCwith300fb1\lesssim 500 GeV, a 14 TeV LHC with 300 {\rm fb}^{-1} is required to reasonably establish the scenario and extract the relevant mixing parameters.Comment: version to be published in JHE

    The Combination of Curaxin CBL0137 and Histone Deacetylase Inhibitor Panobinostat Delays KMT2A-Rearranged Leukemia Progression

    Get PDF
    Rearrangements of the Mixed Lineage Leukemia (MLL/KMT2A) gene are present in approximately 10% of acute leukemias and characteristically define disease with poor outcome. Driven by the unmet need to develop better therapies for KMT2A-rearranged leukemia, we previously discovered that the novel anti-cancer agent, curaxin CBL0137, induces decondensation of chromatin in cancer cells, delays leukemia progression and potentiates standard of care chemotherapies in preclinical KMT2A-rearranged leukemia models. Based on the promising potential of histone deacetylase (HDAC) inhibitors as targeted anti-cancer agents for KMT2A-rearranged leukemia and the fact that HDAC inhibitors also decondense chromatin via an alternate mechanism, we investigated whether CBL0137 could potentiate the efficacy of the HDAC inhibitor panobinostat in KMT2A-rearranged leukemia models. The combination of CBL0137 and panobinostat rapidly killed KMT2A-rearranged leukemia cells by apoptosis and significantly delayed leukemia progression and extended survival in an aggressive model of MLL-AF9 (KMT2A:MLLT3) driven murine acute myeloid leukemia. The drug combination also exerted a strong anti-leukemia response in a rapidly progressing xenograft model derived from an infant with KMT2A-rearranged acute lymphoblastic leukemia, significantly extending survival compared to either monotherapy. The therapeutic enhancement between CBL0137 and panobinostat in KMT2A-r leukemia cells does not appear to be mediated through cooperative effects of the drugs on KMT2A rearrangement-associated histone modifications. Our data has identified the CBL0137/panobinostat combination as a potential novel targeted therapeutic approach to improve outcome for KMT2A-rearranged leukemia

    Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model

    Get PDF
    The alignment in flavour space of the Yukawa matrices of a general two-Higgs-doublet model results in the absence of tree-level flavour-changing neutral currents. In addition to the usual fermion masses and mixings, the aligned Yukawa structure only contains three complex parameters, which are potential new sources of CP violation. For particular values of these three parameters all known specific implementations of the model based on discrete Z_2 symmetries are recovered. One of the most distinctive features of the two-Higgs-doublet model is the presence of a charged scalar. In this work, we discuss its main phenomenological consequences in flavour-changing processes at low energies and derive the corresponding constraints on the parameters of the aligned two-Higgs-doublet model.Comment: 46 pages, 19 figures. Version accepted for publication in JHEP. References added. Discussion slightly extended. Conclusions unchange

    Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions

    Get PDF
    Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells

    Light Stop Decay in the MSSM with Minimal Flavour Violation

    Full text link
    In supersymmetric scenarios with a light stop particle t~1\tilde{t}_1 and a small mass difference to the lightest supersymmetric particle (LSP) assumed to be the lightest neutralino, the flavour changing neutral current decay t~1cχ~10\tilde{t}_1 \to c \tilde{\chi}_1^0 can be the dominant decay channel and can exceed the four-body stop decay for certain parameter values. In the framework of Minimal Flavour Violation (MFV) this decay is CKM-suppressed, thus inducing long stop lifetimes. Stop decay length measurements at the LHC can then be exploited to test models with minimal flavour breaking through Standard Model Yukawa couplings. The decay width has been given some time ago by an approximate formula, which takes into account the leading logarithms of the MFV scale. In this paper we calculate the exact one-loop decay width in the framework of MFV. The comparison with the approximate result exhibits deviations of the order of 10% for large MFV scales due to the neglected non-logarithmic terms in the approximate decay formula. The difference in the branching ratios is negligible. The large logarithms have to be resummed. The resummation is performed by the solution of the renormalization group equations. The comparison of the exact one-loop result and the tree level flavour changing neutral current decay, which incorporates the resummed logarithms, demonstrates that the resummation effects are important and should be taken into account.Comment: 29 page

    Decoupling property of the supersymmetric Higgs sector with four doublets

    Full text link
    In supersymmetric standard models with multi Higgs doublet fields, selfcoupling constants in the Higgs potential come only from the D-terms at the tree level. We investigate the decoupling property of additional two heavier Higgs doublet fields in the supersymmetric standard model with four Higgs doublets. In particular, we study how they can modify the predictions on the quantities well predicted in the minimal supersymmetric standard model (MSSM), when the extra doublet fields are rather heavy to be measured at collider experiments. The B-term mixing between these extra heavy Higgs bosons and the relatively light MSSM-like Higgs bosons can significantly change the predictions in the MSSM such as on the masses of MSSM-like Higgs bosons as well as the mixing angle for the two light CP-even scalar states. We first give formulae for deviations in the observables of the MSSM in the decoupling region for the extra two doublet fields. We then examine possible deviations in the Higgs sector numerically, and discuss their phenomenological implications.Comment: 26 pages, 24 figures, text sligtly modified,version to appear in Journal of High Energy Physic
    corecore