27,819 research outputs found

    Impact of money on emotional expression

    Get PDF
    Activating the concept of money can influence people's own expressions of emotion as well as their reactions to the emotional expressions of others. Thinking about money increases individuals' disposition to perceive themselves in a business-like relationship with others in which transactions are based on objective criteria and the expression of emotion is considered inappropriate. Therefore, these individuals express less emotion in public and expect others to do likewise. Six experiments show that subtle reminders of money lead people to have more negative attitudes toward expressing emotions in public and to avoid expressing emotion in their written communications. In addition, money-primed participants judge others' emotions to be more extreme and are disposed to avoid interacting with persons who display these emotions, especially when participants believe that these emotions are expressed in public.postprin

    An efficient marching-on-in-degree solution of transient multiscale EM scattering problems

    Get PDF
    A marching-on-in-degree (MOD)-based time-domain domain decomposition method is proposed to efficiently analyze the transient electromagnetic scattering from electrically large multiscale targets. The algorithm starts with an octree that divides the whole scattering target into several subdomains. Then using the equivalence principle algorithm, each subdomain is enclosed by an equivalence sphere (ES), where both the RWG and BoR spatial basis functions are employed to expand the unknown currents. The interactions of the near-field subdomains are directly calculated by the method of moments, while the far-field interactions can be converted into the interactions of corresponding ESs. This scheme implicitly satisfies the current continuity condition, and the convergence can be accelerated as well. By harnessing the rotational symmetry of the ESs, the computational resources are reduced significantly compared with the traditional MOD method. Several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed algorithm. © 2016 IEEE.postprin

    Strong Casimir force reduction through metallic surface nanostructuring

    Get PDF
    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force plays a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction.Comment: 11 pages, 8 figure

    How sonoporation disrupts cellular structural integrity: morphological and cytoskeletal observations

    Get PDF
    Posters: no. 1Control ID: 1672429OBJECTIVES: In considering sonoporation for drug delivery applications, it is essential to understand how living cells respond to this puncturing force. Here we seek to investigate the effects of sonoporation on cellular structural integrity. We hypothesize that the membrane morphology and cytoskeletal behavior of sonoporated cells under recovery would inherently differ from that of normal viable cells. METHODS: A customized and calibrated exposure platform was developed for this work, and the ZR-75-30 breast carcinoma cells were used as the cell model. The cells were exposed to either single or multiple pulses of 1 MHz ultrasound (pulse length: 30 or 100 cycles; PRF: 1kHz; duration: up to 60s) with 0.45 MPa spatial-averaged peak negative pressure and in the presence of lipid-shelled microbubbles. Confocal microscopy was used to examine insitu the structural integrity of sonoporated cells (identified as ones with exogenous fluorescent marker internalization). For investigations on membrane morphology, FM 4-64 was used as the membrane dye (red), and calcein was used as the sonoporation marker (green); for studies on cytoskeletal behavior, CellLight (green) and propidium iodide (red) were used to respectively label actin filaments and sonoporated cells. Observation started from before exposure to up to 2 h after exposure, and confocal images were acquired at real-time frame rates. Cellular structural features and their temporal kinetics were quantitatively analyzed to assess the consistency of trends amongst a group of cells. RESULTS: Sonoporated cells exhibited membrane shrinkage (decreased by 61% in a cell’s cross-sectional area) and intracellular lipid accumulation (381% increase compared to control) over a 2 h period. The morphological repression of sonoporated cells was also found to correspond with post-sonoporation cytoskeletal processes: actin depolymerization was observed as soon as pores were induced on the membrane. These results show that cellular structural integrity is indeed disrupted over the course of sonoporation. CONCLUSIONS: Our investigation shows that the biophysical impact of sonoporation is by no means limited to the induction of membrane pores: e.g. structural integrity is concomitantly affected in the process. This prompts the need for further fundamental studies to unravel the complex sequence of biological events involved in sonoporation.postprin

    The role of mutation rate variation and genetic diversity in the architecture of human disease

    Get PDF
    Background We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be higher in genes associated with disease, unless all genes that could cause disease have already been identified. Results Consistent with our predictions we find that genes associated with Mendelian and complex disease are substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is controlled for. The effect is small nevertheless. Conclusions Our results suggest that gene length contributes to whether a gene is associated with disease. However, the mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is associated with disease

    Business process modelling and visualisation to support e-government decision making: Business/IS alignment

    Get PDF
    © 2017 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/978-3-319-57487-5_4.Alignment between business and information systems plays a vital role in the formation of dependent relationships between different departments in a government organization and the process of alignment can be improved by developing an information system (IS) according to the stakeholders’ expectations. However, establishing strong alignment in the context of the eGovernment environment can be difficult. It is widely accepted that business processes in the government environment plays a pivotal role in capturing the details of IS requirements. This paper presents a method of business process modelling through UML which can help to visualise and capture the IS requirements for the system development. A series of UML models have been developed and discussed. A case study on patient visits to a healthcare clinic in the context of eGovernment has been used to validate the models

    Electric-field-induced alignment of electrically neutral disk-like particles: modelling and calculation

    Get PDF
    This work reveals a torque from electric field to electrically neutral flakes that are suspended in a higher electrical conductive matrix. The torque tends to rotate the particles toward an orientation with its long axis parallel to the electric current flow. The alignment enables the anisotropic properties of tiny particles to integrate together and generate desirable macroscale anisotropic properties. The torque was obtained from thermodynamic calculation of electric current free energy at various microstructure configurations. It is significant even when the electrical potential gradient becomes as low as 100 v/m. The changes of electrical, electroplastic and thermal properties during particles alignment were discussed

    Efficient Online Timed Pattern Matching by Automata-Based Skipping

    Full text link
    The timed pattern matching problem is an actively studied topic because of its relevance in monitoring of real-time systems. There one is given a log ww and a specification A\mathcal{A} (given by a timed word and a timed automaton in this paper), and one wishes to return the set of intervals for which the log ww, when restricted to the interval, satisfies the specification A\mathcal{A}. In our previous work we presented an efficient timed pattern matching algorithm: it adopts a skipping mechanism inspired by the classic Boyer--Moore (BM) string matching algorithm. In this work we tackle the problem of online timed pattern matching, towards embedded applications where it is vital to process a vast amount of incoming data in a timely manner. Specifically, we start with the Franek-Jennings-Smyth (FJS) string matching algorithm---a recent variant of the BM algorithm---and extend it to timed pattern matching. Our experiments indicate the efficiency of our FJS-type algorithm in online and offline timed pattern matching

    Good adherence to HAART and improved survival in a community HIV/AIDS treatment and care programme: the experience of The AIDS Support Organization (TASO), Kampala, Uganda.

    Get PDF
    BACKGROUND: Poor adherence to highly active antiretroviral therapy (HAART) may result in treatment failure and death. Most reports of the effect of adherence to HAART on mortality come from studies where special efforts are made to provide HAART under ideal conditions. However, there are few reports of the impact of non-adherence to HAART on mortality from community HIV/AIDS treatment and care programmes in developing countries. We therefore conducted a study to assess the effect of adherence to HAART on survival in The AIDS Support Organization (TASO) community HAART programme in Kampala, Uganda. METHODS: The study was a retrospective cohort of 897 patients who initiated HAART at TASO clinic, Kampala, between May 2004 and December 2006. A total of 7,856 adherence assessments were performed on the data. Adherence was assessed using a combination of self-report and pill count methods. Patients who took 95%. The crude death rate was 12.2 deaths per 100 patient-years, with a rate of 42.5 deaths per 100 patient-years for non-adherent patients and 6.1 deaths per 100 patient-years for adherent patients. Non-adherence to ART was significantly associated with mortality. Patients with a CD4 count of less than 50 cells/mm3 had a higher mortality (HR = 4.3; 95% CI: 2.22-5.56) compared to patients with a CD4 count equal to or greater than 50 cells/mm3 (HR = 2.4; 95% CI: 1.79-2.38). CONCLUSION: Our study showed that good adherence and improved survival are feasible in community HIV/AIDS programmes such as that of TASO, Uganda. However, there is need to support community HAART programmes to overcome the challenges of funding to provide sustainable supplies particularly of antiretroviral drugs; provision of high quality clinical and laboratory support; and achieving a balance between expansion and quality of services. Measures for the early identification and treatment of HIV infected people including home-based VCT and HAART should be strengthened

    The Protein O-glucosyltransferase Rumi Modifies Eyes Shut to Promote Rhabdomere Separation in Drosophila

    Get PDF
    The protein O-glucosyltransferase Rumi/POGLUT1 regulates Drosophila Notch signaling by adding O-glucose residues to the Notch extracellular domain. Rumi has other predicted targets including Crumbs (Crb) and Eyes shut (Eys), both of which are involved in photoreceptor development. However, whether Rumi is required for the function of Crb and Eys remains unknown. Here we report that in the absence of Rumi or its enzymatic activity, several rhabdomeres in each ommatidium fail to separate from one another in a Notch-independent manner. Mass spectral analysis indicates the presence of O-glucose on Crb and Eys. However, mutating all O-glucosylation sites in a crb knock-in allele does not cause rhabdomere attachment, ruling out Crb as a biologically-relevant Rumi target in this process. In contrast, eys and rumi exhibit a dosage-sensitive genetic interaction. In addition, although in wild-type ommatidia most of the Eys protein is found in the inter-rhabdomeral space (IRS), in rumi mutants a significant fraction of Eys remains in the photoreceptor cells. The intracellular accumulation of Eys and the IRS defect worsen in rumi mutants raised at a higher temperature, and are accompanied by a ∼50% decrease in the total level of Eys. Moreover, removing one copy of an endoplasmic reticulum chaperone enhances the rhabdomere attachment in rumi mutant animals. Altogether, our data suggest that O-glucosylation of Eys by Rumi ensures rhabdomere separation by promoting proper Eys folding and stability in a critical time window during the mid-pupal stage. Human EYS, which is mutated in patients with autosomal recessive retinitis pigmentosa, also harbors multiple Rumi target sites. Therefore, the role of O-glucose in regulating Eys may be conserved
    corecore