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 

Abstract—A marching-on-in-degree (MOD) based time-domain 
domain decomposition method (TD-DDM) is proposed to 
efficiently analyze the transient EM scattering from electrically 
large multiscale targets. The algorithm starts with an octree which 
divide the whole scattering target into several sub-domains. Then 
using the equivalence principle algorithm (EPA) each sub-domain 
is enclosed by an equivalence sphere, where both the RWG and 
BoR spatial basis functions are employed to expand the unknown 
currents. The interactions of the near-field sub-domains are 
calculated directly by the method of moments (MoM), while the 
far-field interactions can be converted to the interactions of 
corresponding equivalence spheres. This scheme implicitly 
satisfies the current continuity condition and the convergence can 
be accelerated as well. By harnessing the rotational symmetry of 
the equivalence spheres, the computational resources are reduced 
significantly compared to the traditional MOD method. Several 
numerical examples are presented to demonstrate the accuracy 
and efficiency of the proposed algorithm.  

 
Index Terms—EM scattering, equivalence principle algorithm, 

time-domain domain decomposition method  
 

I. INTRODUCTION 

 ecently, the multiscale electromagnetic (EM) scattering 
problem has been an important research topic in 
computational electromagnetics society. The multiscale 

problem is extremely challenging for traditional numerical 
methods because of the bad convergence. A lot of numerical 
techniques were proposed to solve the problems with a high 
efficiency [1-7].  

On the other hand, the transient EM scattering problems have 
been paid more and more attention due to its rich application. 
The time domain integral equation (TDIE) is widely used to 
analyze wideband EM responses from scatterers. There are two 
representative schemes for the TDIE, namely the 
marching-on-in-time (MOT) scheme [8] and 
marching-on-in-degree (MOD) scheme [9]. A great number of 
strategies have been proposed to speed up the two schemes, 
such as the multilevel plane wave time domain algorithm 
(PWTD) [10], the time domain adaptive integral method 
(TD-AIM) [11], the fast Fourier transform (FFT) [12], the UV 
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method [13], the adaptive cross approximate (ACA) algorithm 
[14] and so on. Unfortunately, all above-mentioned methods 
can not improve the convergence of the matrix equation, which 
will result in bad computational efficiency.  

In this paper, we proposed an efficient MOD solution to the 
transient multiscale EM scattering problems. Firstly, the whole 
scattering target is divided into several sub-domains with an 
octree data structure and each sub-domain is enclosed by an 
equivalence sphere. Then the interactions between two 
near-field sub-domains are computed directly with the MoM, 
while the far-field interactions can be replaced by the 
interactions of their corresponding equivalence spheres (ES) 
using the equivalence principle algorithm (EPA). It should be 
noted that the current continuity condition can be satisfied 
implicitly by this technique. By using the rotationally 
symmetric property of the equivalence spheres, the 
computational resources are reduced significantly [15-18]. 
Moreover, the basis transformation technique is adopted 
between the RWG and BoR basis sets defined on the 
equivalence spheres. At last, both the inner iteration in each 
local sub-domain and the outer iteration of all the sub-domains 
are employed simultaneously to solve the whole system with a 
high convergence rate.  

The remainder of the paper is organized as follows. The 
proposed algorithm is described in detail in Section II. In 
Section III, a series of numerical examples are given to 
demonstrate the accuracy and efficiency of the proposed 
method. At last, a conclusion is drawn in Section IV.  

II. THEORY AND FORMULAS 

A. Grouping Implementation 

 
Fig. 1 Three-dimensional grouping sketch for an airplane (non-zero 

sub-domains).  
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As shown in Fig. 1, a cube is used to enclose the PEC 
airplane and the cube can be recursively decomposed into eight 
sub-cubes. More specifically, a scattering target can be divided 
into several sub-domains depending on an octree.  

ith

 Fig. 2 Two-dimensional grouping sketch.  

Each sub-domain is enclosed with an equivalence sphere 
with the same size. As shown in Fig. 2, the sub-domains are 
defined as the near-field interaction when their equivalence 

spheres are overlapping with each other. Otherwise, they are the 
far-field interaction.  

Suppose a PEC target is illuminated by a plane wave in free 
space and it is divided into M  sub-domains and the interaction 

in the ith sub-domain can be calculated as  

        ,

n f

n f

inc fn
ij ijii i i

j j
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ij j ij ji

j j

 
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where iiZ is the self-acting matrix of the ith sub-domain, iI and 

jI represent the unknown current coefficients for the ith and 

jth sub-domain respectively, ijZ denotes the interaction matrix 

between the ith and jth sub-domains, 
inc
iV is the incident field 

for the ith  sub-domain, n  and f  represent the near-field 

and far-field sub-domains.  
For near-field interactions, the RWG basis functions on the 

scattering target are calculated directly with the MoM. Then the 
induced electric field of the ith sub-domain can be expressed in 

terms of the scattered electric current of the jth  near-field 

sub-domain.  
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However, the interactions of any two far-field sub-domains 
are calculated by the ones between their corresponding 
equivalence spheres by using the EPA [3, 22-23]. In this way, 
the current continuity condition can be satisfied without tapping 
the basis functions. There are four steps for the calculation, 
namely outside-in propagation, solving for the current on the 
object, inside-out propagation, and translation operator.  

B. Outside-in propagation 

, , , , 
s s
E R i E R iJ M，

, 
s
P iE

 
Fig. 3 Outside-in propagation process.  

 
The scattered electric current on the scattering target is 

discretized with the RWG spatial basis functions [1] and the 
weighted Laguerre polynomial as the temporal basis functions 
[9].  

 , , , ,
1 0

,( , ) ( ) ( )
s lN N

s
PEC i PEC n v i n v

n v

I s  
 

J r f r          (3) 

where PEC stands for the perfect electric conductor, , , ,PEC n v iI  

is the expansion coefficients of scattered electric current on the 

scattering target for basis function n and order v in the ith  

sub-domain, ( )nf r  denotes the spatial RWG basis functions, 

( )v s  is served as the temporal basis functions, sN  and lN  

represent the number of spatial and temporal basis functions, 
respectively.  

The equivalent scattered electric/magnetic currents on 

i th equivalence sphere are expanded as the RWG spatial basis 

functions, which can be written as  
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s M
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n v
I s  

 
  M r f r

     

 (5) 

where ES stands for equivalence sphere. , , , 
J
ES n v iI  and , , , 

M
ES n v iI  

are the RWG expansion coefficients.  
As shown in Fig. 3, the induced electric field on the scattering 

target for the ith  sub-domain which is illuminated by the 

source on the ith equivalence sphere can be calculated as  
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Where | |R  r r , 0  and 0  are respectively the 

permittivity and permeability in free space.  

C. Solving for the current on the object 

The scattered electric current on the PEC scattering target for 
the ith  sub-domain can be computed as 
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D. Inside-out propagation 
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Fig. 4 Inside-out propagation process.  

 
As shown in Fig. 4, the induced equivalent scattered 

electric/magnetic current on i th equivalence sphere is obtained  
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where ˆ( )n r  is the outward normal unit vector of the 

i th equivalence sphere.  

 

E. Translation operator 

ith
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Fig. 5 Interaction between two far-field subdomains.  

 
For the translation operator, the BoR basis functions [19-21] 

are used to discretize the equivalence sphere and can be 
expressed as  
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where 
,
, , , , 

J t
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,
, , , , 
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,
, , , , 

J
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
  and 

,
, , , , 

M
ES n v iI


  are the 

BoR expansion coefficients of the ith  equivalence sphere for 

mode  , basis function n and order v . , ( )
t

nf r and 

, ( )n

f r denote the spatial basis functions in the longitudinal and 

azimuthal direction, respectively.  
Therefore, the RWG-based electric/magnetic currents on 

i th equivalence sphere should be converted into the 
BoR-based ones. Moreover, the coordinate transformation 
technique is adopted to transform the current coefficients 
among two different coordinate systems [22].  
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where , t  ,   ,   represents the inner-product operation.  

Similarly, the BoR-based induced equivalent scattered 
electric/magnetic currents can also be converted into the 
RWG-based currents by using the following equations.  

, , , ,( , ), ( ) ( , ), ( )s s
ES RWG i n ES BoR i n J r f r J r f r       (14) 
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, , , ,( , ), ( ) ( , ), ( )s s
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Suppose the i th and j th  sub-domains are far-field 

interactions, as shown in Fig. 5. The interactions of two far-field 
sub-domains can be computed as follows.  
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For the far-field interactions, the unknowns are expanded 
with spatial basis functions defined on the boundary curve and 
Fourier series in the azimuthal direction due to the rotationally 
symmetric property of the equivalence sphere. Therefore, both 
the memory requirement and the CPU time can be reduced 
significantly. It should be noted that the outer iteration among 
the far-filed sub-domains is finished when the induced scattered 
electric current on the scattering target becomes stable.  

III. NUMERICAL EXAMPLES  

In this section, several numerical results are presented to 
demonstrate the effectiveness of the proposed solver. All 
numerical results are tested on a Dell workstation with 40 CPUs 
and 512 GB memory. The mesh sizes of both the RWG and 

BoR basis functions for the equivalence sphere are min0.1 , 

where min  is the wavelength at the maximum frequency. The 

incident wave is a modulated Gaussian pulse and is defined as  
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where 0f is the center frequency, 

6 / (2 ) bwf  , bwf represents the bandwidth of the Gaussian 

impulse, and pt is the time delay.  

A. Accuracy and computational complexity  

Firstly, the transient EM scattering from a PEC sphere with 
the radius of 0.7 m is investigated with the center frequency of 
150 MHz and the pulse width of 300 MHz. The incident plane 

wave is fixed at 0



inc

 , 0



inc and the time delay of the 

modulated Gaussian pulse is 4.5 lm . The mesh size for this 
sphere is 0.1 m. The unknown scattered electric current on the 
PEC sphere is expanded with 1836 spatial basis functions and 
50 temporal basis functions. The whole computational domain 
is divided into 64 sub-domains with the size of 
0.4 m 0.4 m 0.4 m  . It should be noted that there are 48 
nonempty sub-domains. Each of them is enclosed with an 
equivalence sphere with the radius of 0.4 m. Each equivalence 
sphere is discretized into 606 RWG and 16 BoR spatial basis 
functions. Four Fourier modes are needed in this computation. 
As shown in Fig. 6, the bistatic RCS results are compared 
between the proposed method and the Mie Series at several 
frequencies. It can be seen that there is a good agreement 
between them. Moreover, the backward scattered field for the 
proposed method is compared with the one of the traditional 
MOD method in Fig. 7.  

Additionally, the computational complexity of the proposed 
method is investigated. Only the 0 th degree of the temporal 
basis function is simulated for the sake of available memory. 
Both the memory requirement and average CPU time per 
degree with 825, 1311, 1836 and 2919 spatial unknowns are 
shown in Fig. 8. It can be seen that the complexity of the 
proposed method scales as O(N).  
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Fig. 6 Bistatic RCS results of a PEC sphere:  

(a) f=50MHz, (b) f=150MHz, (c) f=250MHz.  
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Fig. 7 The backward scattered field for a PEC sphere.  
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Fig. 8 (a) Memory requirement of PEC sphere versus spatial unknowns, 
(b) Average CPU time per degree of PEC sphere versus spatial unknowns.  

B. Convergence performance and optimal grouping scheme 

Secondly, we consider the transient EM scattering from a 
ring with the inner radius of 1.2 m and the outer radius of 1.5 m. 
The time delay of the modulated Gaussian pulse is set to be 
4.0 lm with the center frequency of 150 MHz and the pulse 
width of 300 MHz, where lm  represents light meter and 1( lm ) 
= 1/3.0e8. In this numerical example, 12132 spatial basis 
functions and 80 temporal basis functions are adopted with four 
modal equations to be solved. The whole computational domain 
is divided into 64 sub-domains with the size of 
0.8 m 0.8 m 0.8 m   and there are 12 nonempty sub-domains. 
The radius of the equivalence sphere is 0.75 m and the 
equivalence sphere is discretized into 639 RWG and 24 BoR 
spatial basis functions. The meshes and the grouping of the ring 

are shown in Fig. 9. The mesh size of min0.05 is adopted to 

both the top and the down faces and min0.08 for the sides. As 

shown in Fig. 10, bistatic RCS results of the proposed method at 
several frequencies are given and compared with the traditional 
MOD method.  

Moreover, the convergences for the first order are compared 
between them in Fig. 11 and the numbers of convergence for 
each order are given in Fig. 12. Additionally, the convergence 
performance is tested for the multiscale problem. The part of 
the ring is meshed densely. As shown in Fig. 13, the iteration 
number of the proposed method is compared with the 
traditional MOD method versus the ratio of the maximum mesh 
size over the minimum mesh size. It can be found that the 
proposed method is much more stable for the multiscale 
problems.  

At last, the computational resources for different grouping 
schemes are given in Table 1. The memory requirement can be 
reduced with the size of sub-domains decreasing. However, 
more CPU time is needed when the grouping size is too small or 
too big. Some additional propagation operators are needed to be 
calculated when the grouping size is big, which will result in 
bad efficiency. On the other hand, a lot of CPU time is needed 
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for the calculation of translation operators when the grouping 
size is small. It can be concluded from the numerical results that 
higher efficiency can be obtained when there is a good balance 
between the numbers of near-field and far-field interactions. 
Generally speaking, the optimal grouping scheme can be 
achieved when the number of BoR unknowns on the 
equivalence sphere is much smaller than the one of RWG 
unknowns on the scattering target in this sub-cube and the total 
number of nonempty sub-domains is less than 30 at the same 
time.  

 

 
(a)                                                        (b) 

Fig. 9 (a) The meshes of the ring  
(b) The grouping of the ring (one color stands one group).  
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Fig. 10 Bistatic RCS results of the ring: 
(a) f=50MHz, (b) f=150MHz, (c) f=250MHz.  
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Fig. 11 Convergence history of the first order for the ring.  
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Fig. 12 Number of iteration versus temporal order.  

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7 

0

3000

6000

9000

12000

5 10 15 20

hmax/hmin

It
er

at
io

n 
N

u
m

b
er

Proposed Method

Traditional MOD Method

 
Fig. 13 Iteration number versus the ratio of the maximum mesh size over the 

minimum mesh size.  
 

Table 1 Comparisons of different grouping schemes 

Size of 
Sub-domains 

(m) 

No. of Sub-domains 
(Total/Nonempty) 

Total CPU 
Time (h) 

Memory 
Requirement 

(GB) 

2.8 8/4 12.5 39.7 

1.5 64/12 8.22 32.9 

0.8 512/88 49.3 15.4 

 

C. Computational efficiency 

Thirdly, a missile model is analyzed by the proposed method 

with the incident plane wave fixed at 0



inc

 , 0



inc . The 

geometry, the grouping scheme and the mesh of the missile 
model are given in Fig. 14. It can be seen that the meshes are 
nonuniform on the surface. The mesh size of 0.1 m is adopted to 
the cylinder and 0.04 m for the wings. In this numerical example, 
the center frequency of modulated Gaussian pulse is 150 MHz, 
the pulse width is 300 MHz and the time delay is 5.0 lm . This 
problem is discretized into 18213 spatial basis functions and 80 
temporal basis functions and two Fourier modes are needed. 
The whole computational domain is divided into 512 
subdomains with the size of 1.4 m 1.4 m 1.4 m   and there 

are 5 nonempty subdomains. The radius of the equivalence 
sphere is 1.3m and the equivalence sphere is discretized into 
1329 RWG and 36 BoR spatial basis functions. As shown in Fig. 
15, bistatic RCS results at several frequencies are compared 
between the proposed method and the traditional MOD method. 
Moreover, the computational resources are listed in Table 2.  

 
 

 
(a)                               (b)                               (c) 

Fig. 14 (a) The geometry of the missile model  
(b) The grouping of the missile model (one color stands one group) 

(c) The mesh of the missile model.  
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Fig. 15 Bistatic RCS results of the missile model: 
(a) f=50MHz, (b) f=150MHz, (c) f=250MHz.  

 
Table 2 Comparison of the average number of iteration, memory requirement 

and the total CPU time for the missile model.  

Methods 
Average Number 

of Iteration 

Memory 
Requirement 

(GB) 

Total CPU 
Time (h) 

Traditional MOD 
Method 

602 197.8 17.8 

Proposed Method 8 32.1 13.1 

 

IV. CONCLUSION 

A novel marching-on-in-degree solver is proposed to 
analyze the transient multiscale EM scattering problems. The 
whole computational region is divided into several sub-domains 
and each sub-domain is enclosed with an equivalence sphere. 
Then the interactions of the far-field sub-domains are converted 
to the interactions of their corresponding equivalence spheres 
with BoR basis functions. Therefore, compared with the 

traditional MOD method, the memory requirement is reduced 
significantly and good convergence is obtained by the proposed 
method. Numerical examples are presented to demonstrate the 
validity and efficiency of the proposed method.  
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