54 research outputs found
Out of Their Depth? Isolated Deep Populations of the Cosmopolitan Coral Desmophyllum dianthus May Be Highly Vulnerable to Environmental Change
Deep sea scleractinian corals will be particularly vulnerable to the effects of
climate change, facing loss of up to 70% of their habitat as the
Aragonite Saturation Horizon (below which corals are unable to form calcium
carbonate skeletons) rises. Persistence of deep sea scleractinian corals will
therefore rely on the ability of larvae to disperse to, and colonise, suitable
shallow-water habitat. We used DNA sequence data of the internal transcribed
spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial
control region (MtC) to determine levels of gene flow both within and among
populations of the deep sea coral Desmophyllum dianthus in SE
Australia, New Zealand and Chile to assess the ability of corals to disperse
into different regions and habitats. We found significant genetic subdivision
among the three widely separated geographic regions consistent with isolation
and limited contemporary gene flow. Furthermore, corals from different depth
strata (shallow <600 m, mid 1000–1500 m, deep >1500 m) even on the
same or nearby seamounts were strongly differentiated, indicating limited
vertical larval dispersal. Genetic differentiation with depth is consistent with
the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water,
the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we
propose that coral larvae will be retained within, and rarely migrate among,
these water masses. The apparent absence of vertical larval dispersal suggests
deep populations of D. dianthus are unlikely to colonise
shallow water as the aragonite saturation horizon rises and deep waters become
uninhabitable. Similarly, assumptions that deep populations will act as refuges
for shallow populations that are impacted by activities such as fishing or
mining are also unlikely to hold true. Clearly future environmental management
strategies must consider both regional and depth-related isolation of deep-sea
coral populations
Contrasting patterns of population structure and gene flow facilitate exploration of connectivity in two widely distributed temperate octocorals
This is the final version of the article. Available from Springer Nature via the DOI in this record.Connectivity is an important component of metapopulation dynamics in marine systems and can influence population persistence, migration rates and conservation decisions associated with Marine Protected Areas (MPAs). In this study, we compared the genetic diversity, gene flow and population structure of two octocoral species, Eunicella verrucosa and Alcyonium digitatum, in the northeast Atlantic (ranging from the northwest of Ireland and the southern North Sea, to southern Portugal), using two panels of thirteen and eight microsatellite loci, respectively. Our results identified regional genetic structure in E. verrucosa partitioned between populations from southern Portugal, northwest Ireland, and Britain/France; subsequent hierarchical analysis of population structure also indicated reduced gene flow between southwest Britain and northwest France. However, over a similar geographical area, A. digitatum showed little evidence of population structure, suggesting high gene flow and/or a large effective population size; indeed, the only significant genetic differentiation detected in A. digitatum occurred between North Sea samples and those from the English Channel/northeast Atlantic. In both species the vast majority of gene flow originated from sample sites within regions, with populations in southwest Britain being the predominant source of contemporary exogenous genetic variants for the populations studied. Unsurprisingly, historical patterns of gene flow appeared more complex, though again southwest Britain appeared an important source of genetic variation for both species. Our findings have major conservation implications, particularly for E. verrucosa, a protected species in UK waters and listed by the IUCN as ‘Vulnerable’, and for the designation and management of European MPAs.We thank Natural England (project No. RP0286, contract No. SAE 03-02-146), the NERC (grant No. NE/L002434/1) and the University of Exeter for funding this research. Additional funding for sample collection, travel and microsatellite development was provided by the EU Framework 7 ASSEMBLE programme, agreement no. 227799, and NERC grant No. NBAF-362
Pushover Analysis for Plan Irregular Building Structures
Nonlinear static procedures (NSPs), also known as "pushover methods", represent the most used tool in the professional practice for assessment of seismic performance of building structures. Most of the methods subscribed by major seismic codes for seismic analysis of new or existing buildings have been originally defined for simple regular structures
From staff-mix to skill-mix and beyond: towards a systemic approach to health workforce management
Throughout the world, countries are experiencing shortages of health care workers. Policy-makers and system managers have developed a range of methods and initiatives to optimise the available workforce and achieve the right number and mix of personnel needed to provide high-quality care. Our literature review found that such initiatives often focus more on staff types than on staff members' skills and the effective use of those skills. Our review describes evidence about the benefits and pitfalls of current approaches to human resources optimisation in health care. We conclude that in order to use human resources most effectively, health care organisations must consider a more systemic approach - one that accounts for factors beyond narrowly defined human resources management practices and includes organisational and institutional conditions
Aquaponics: alternative types and approaches
Whilst aquaponics may be considered in the mid-stage of development, there are a number of allied, novel methods of food production that are aligning alongside aquaponics and also which can be merged with aquaponics to deliver food efficiently and productively. These technologies include algaeponics, aeroponics, aeroaquaponics, maraponics, haloponics, biofloc technology and vertical aquaponics. Although some of these systems have undergone many years of trials and research, in most cases, much more scientific research is required to understand intrinsic
processes within the systems, efficiency, design aspects, etc., apart from the capacity, capabilities and benefits of conjoining these systems with aquaponics
- …