1,318 research outputs found

    Use of archival versus newly collected tumor samples for assessing PD-L1 expression and overall survival : an updated analysis of KEYNOTE-010 trial

    No full text
    Background: In KEYNOTE-010, pembrolizumab versus docetaxel improved overall survival (OS) in patients with programmed death-1 protein (PD)-L1-positive advanced non-small-cell lung cancer (NSCLC). A prespecified exploratory analysis compared outcomes in patients based on PD-L1 expression in archival versus newly collected tumor samples using recently updated survival data. Patients and methods: PD-L1 was assessed centrally by immunohistochemistry (22C3 antibody) in archival or newly collected tumor samples. Patients received pembrolizumab 2 or 10 mg/kg Q3W or docetaxel 75 mg/m2 Q3W for 24 months or until progression/intolerable toxicity/other reason. Response was assessed by RECIST v1.1 every 9 weeks, survival every 2 months. Primary end points were OS and progression-free survival (PFS) in tumor proportion score (TPS) 50% and 1%; pembrolizumab doses were pooled in this analysis. Results: At date cut-off of 24 March 2017, median follow-up was 31 months (range 23-41) representing 18 additional months of follow-up from the primary analysis. Pembrolizumab versus docetaxel continued to improve OS in patients with previously treated, PD-L1-expressing advanced NSCLC; hazard ratio (HR) was 0.66 [95% confidence interval (CI): 0.57, 0.77]. Of 1033 patients analyzed, 455(44%) were enrolled based on archival samples and 578 (56%) on newly collected tumor samples. Approximately 40% of archival samples and 45% of newly collected tumor samples were PD-L1 TPS 50%. For TPS 50%, the OS HRs were 0.64 (95% CI: 0.45, 0.91) and 0.40 (95% CI: 0.28, 0.56) for archival and newly collected samples, respectively. In patients with TPS 1%, OS HRs were 0.74 (95% CI: 0.59, 0.93) and 0.59 (95% CI: 0.48, 0.73) for archival and newly collected samples, respectively. In TPS 50%, PFS HRs were similar across archival [0.63 (95% CI: 0.45, 0.89)] and newly collected samples [0.53 (95% CI: 0.38, 0.72)]. In patients with TPS 1%, PFS HRs were similar across archival [0.82 (95% CI: 0.66, 1.02)] and newly collected samples [0.83 (95% CI: 0.68, 1.02)]. Conclusion: Pembrolizumab continued to improve OS over docetaxel in intention to treat population and in subsets of patients with newly collected and archival samples

    On supersymmetric quantum mechanics

    Full text link
    This paper constitutes a review on N=2 fractional supersymmetric Quantum Mechanics of order k. The presentation is based on the introduction of a generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian can be associated with the algebra W_k. This general Hamiltonian covers various supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller system, fractional supersymmetric oscillator of order k, etc.). The case of ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric Quantum Mechanics is briefly described. A realization of the algebra W_k, of the N=2 supercharges and of the corresponding Hamiltonian is given in terms of deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E. Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    Extracellular Administration of BCL2 Protein Reduces Apoptosis and Improves Survival in a Murine Model of Sepsis

    Get PDF
    Severe sepsis and septic shock are major causes of morbidity and mortality worldwide. In experimental sepsis there is prominent apoptosis of various cell types, and genetic manipulation of death and survival pathways has been shown to modulate organ injury and survival.We investigated the effect of extracellular administration of two anti-apoptotic members of the BCL2 (B-cell lymphoma 2) family of intracellular regulators of cell death in a murine model of sepsis induced by cecal ligation and puncture (CLP). We show that intraperitoneal injection of picomole range doses of recombinant human (rh) BCL2 or rhBCL2A1 protein markedly improved survival as assessed by surrogate markers of death. Treatment with rhBCL2 or rhBCL2A1 protein significantly reduced the number of apoptotic cells in the intestine and heart following CLP, and this was accompanied by increased expression of endogenous mouse BCL2 protein. Further, mice treated with rhBCL2A1 protein showed an increase in the total number of neutrophils in the peritoneum following CLP with reduced neutrophil apoptosis. Finally, although neither BCL2 nor BCL2A1 are a direct TLR2 ligand, TLR2-null mice were not protected by rhBCL2A1 protein, indicating that TLR2 signaling was required for the protective activity of extracellularly adminsitered BCL2A1 protein in vivo.Treatment with rhBCL2A1 or rhBCL2 protein protects mice from sepsis by reducing apoptosis in multiple target tissues, demonstrating an unexpected, potent activity of extracellularly administered BCL2 BH4-domain proteins

    Pancreatic adenocarcinoma in a patient with Situs Inversus: a case report of this rare coincidence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Situs inversus </it>(SI) is a relatively rare occurrence in patients with pancreatic adenocarcinoma. Pancreatic resection in these patients has rarely been described. CT scan imaging is a principle modality for detecting pancreatic cancer and its use in SI patients is seldom reported.</p> <p>Case Presentation</p> <p>We report a 48 year old woman with SI who, despite normal CT scan 8 months earlier, presented with obstructive jaundice and a pancreatic head mass requiring a pancreaticoduodenectomy. The surgical pathology report demonstrated pancreatic adenocarcinoma.</p> <p>Conclusion</p> <p>SI is a rare condition with concurrent pancreatic cancer being even rarer. Despite the rarity, pancreaticoduodenectomy in these patients for resectable lesions is safe as long as special consideration to the anatomy is taken. Additionally, radiographic imaging has significantly improved detection of early pancreatic cancer; however, there continues to be a need for improved detection of small neoplasms.</p

    Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes

    Get PDF
    Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer

    Expanding the clinical phenotype in patients with disease causing variants associated with atypical Usher syndrome

    Get PDF
    Atypical Usher syndrome (USH) is poorly defined with a broad clinical spectrum. Here, we characterize the clinical phenotype of disease caused by variants in CEP78, CEP250, ARSG, and ABHD12. Chart review evaluating demographic, clinical, imaging, and genetic findings of 19 patients from 18 families with a clinical diagnosis of retinal disease and confirmed disease-causing variants in CEP78, CEP250, ARSG, or ABHD12. CEP78-related disease included sensorineural hearing loss (SNHL) in 6/7 patients and demonstrated a broad phenotypic spectrum including: vascular attenuation, pallor of the optic disc, intraretinal pigment, retinal pigment epithelium mottling, areas of mid-peripheral hypo-autofluorescence, outer retinal atrophy, mild pigmentary changes in the macula, foveal hypo-autofluorescence, and granularity of the ellipsoid zone. Nonsense and frameshift variants in CEP250 showed mild retinal disease with progressive, non-congenital SNHL. ARSG variants resulted in a characteristic pericentral pattern of hypo-autofluorescence with one patient reporting non-congenital SNHL. ABHD12-related disease showed rod-cone dystrophy with macular involvement, early and severe decreased best corrected visual acuity, and non-congenital SNHL ranging from unreported to severe. This study serves to expand the clinical phenotypes of atypical USH. Given the variable findings, atypical USH should be considered in patients with peripheral and macular retinal disease even without the typical RP phenotype especially when SNHL is noted. Additionally, genetic screening may be useful in patients who have clinical symptoms and retinal findings even in the absence of known SNHL given the variability of atypical USH

    Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model

    Get PDF
    The alignment in flavour space of the Yukawa matrices of a general two-Higgs-doublet model results in the absence of tree-level flavour-changing neutral currents. In addition to the usual fermion masses and mixings, the aligned Yukawa structure only contains three complex parameters, which are potential new sources of CP violation. For particular values of these three parameters all known specific implementations of the model based on discrete Z_2 symmetries are recovered. One of the most distinctive features of the two-Higgs-doublet model is the presence of a charged scalar. In this work, we discuss its main phenomenological consequences in flavour-changing processes at low energies and derive the corresponding constraints on the parameters of the aligned two-Higgs-doublet model.Comment: 46 pages, 19 figures. Version accepted for publication in JHEP. References added. Discussion slightly extended. Conclusions unchange

    Controlling the shape of a quantum wavefunction

    Full text link
    The ability to control the shape and motion of quantum states(1,2) may lead to methods for bond-selective chemistry and novel quantum technologies, such as quantum computing. The classical coherence of laser light has been used to guide quantum systems into desired target states through interfering pathways(3-5). These experiments used the control of target properties-such as fluorescence from a dye solution(6), the current in a semiconductor(7,8) 8 Or the dissociation fraction of an excited molecule(9)-to infer control over the quantum state. Here we report a direct approach to coherent quantum control that allows us to actively manipulate the shape of an atomic electron's radial wavefunction, We use a computer-controlled laser to excite a coherent state in atomic caesium. The shape of the wavefunction is then measured(10) and the information fed back into the laser control system, which reprograms the optical field. The process is iterated until the measured shape of the wavefunction matches that of a target wavepacket, established at the start of the experiment. We find that, using a variation of quantum holography(11) to reconstruct the measured wavefunction, the quantum state can be reshaped to match the target within two iterations of the feedback loop.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62625/1/397233a0.pd
    corecore