17 research outputs found

    Differential effects of azithromycin, doxycycline and co-trimoxazole in ingested blood on the vectorial capacity of malaria mosquitoes

    Get PDF
    Background.  The gut microbiota of malaria vector mosquitoes grows after a blood meal and limits Plasmodium infection. We previously showed that penicillin and streptomycin in the ingested blood affect bacterial growth and positively impact mosquito survival and permissiveness to Plasmodium. In this study, we examine the effects of doxycycline, azithromycin, and co-trimoxazole. All 3 antibiotics are used in mass drug administration programs and have antimicrobial activities against bacteria and various stages of malaria parasites. Methods.  The effects of blood meal supplementation with antibiotics on the mosquito microbiota, lifespan, and permissiveness to Plasmodium falciparum were assessed. Results.  Ingestion of any of the 3 antibiotics significantly affected the mosquito microbiota. Azithromycin decreased P falciparum infection load and mosquito lifespan, whereas at high concentrations, doxycycline increased P falciparum infection load. Co-trimoxazole negatively impacted infection intensity but had no reproducible effect on mosquito lifespan. Conclusions.  Our data suggest that the overall effect of antibiotic treatment on parameters critical for mosquito vectorial capacity is drug specific. The negative effect of azithromycin on malaria transmission is consistent with current efforts for disease elimination, whereas additional, larger scale investigations are required before conclusions can be drawn about doxycycline

    Evaluation of two lead malaria transmission blocking vaccine candidate antibodies in natural parasite-vector combinations.

    Get PDF
    Transmission blocking vaccines (TBV) which aim to control malaria by inhibiting human-to-mosquito transmission show considerable promise though their utility against naturally circulating parasites remains unknown. The efficacy of two lead candidates targeting Pfs25 and Pfs230 antigens to prevent onwards transmission of naturally occurring parasites to a local mosquito strain is assessed using direct membrane feeding assays and murine antibodies in Burkina Faso. The transmission blocking activity of both candidates depends on the level of parasite exposure (as assessed by the mean number of oocysts in control mosquitoes) and antibody titers. A mathematical framework is devised to allow the efficacy of different candidates to be directly compared and determine the minimal antibody titers required to halt transmission in different settings. The increased efficacy with diminishing parasite exposure indicates that the efficacy of vaccines targeting either Pfs25 or Pfs230 may increase as malaria transmission declines. This has important implications for late-stage candidate selection and assessing how they can support the drive for malaria elimination

    Phytochemical screening of Saye, a traditional herbal remedy for malaria

    Get PDF
    phytochemical assay was conducted to establish the chemical profile of “Saye”, a mixture of leaf of Cassia alata, root of Cochlospermum planchonii and whole plant of Phyllantus amarus, used as antimarial remedy. Water and organic extracts were prepared. Characterization of phytoconstituents using specific chemical reagents was performed in tubes, by thin layer chromatography and by high performance liquid chromatography. Steroids and/or triterpenes, cathechic tannins were identified in the decocted and the macerated water extracts of “Saye”. An anthraquinone with a retention time Rt corresponding to 3.34 min was identified by the HPLC analysis.© 2015 International Formulae Group. All rights reserved.Keywords: Chemical profile, anthraquinones, steroids, triterpenes, tannins

    Plant-mediated effects on mosquito capacity to transmit human malaria

    Get PDF
    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities

    Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria

    Get PDF
    Malaria reduction is most efficiently achieved by vector control whereby human populations at high risk of contracting and transmitting the disease are protected from mosquito bites. Here, we identify the presence of antibiotics in the blood of malaria-infected people as a new risk of increasing disease transmission. We show that antibiotics in ingested blood enhance the susceptibility of Anopheles gambiae mosquitoes to malaria infection by disturbing their gut microbiota. This effect is confirmed in a semi-natural setting by feeding mosquitoes with blood of children naturally infected with Plasmodium falciparum. Antibiotic exposure additionally increases mosquito survival and fecundity, which are known to augment vectorial capacity. These findings suggest that malaria transmission may be exacerbated in areas of high antibiotic usage, and that regions targeted by mass drug administration programs against communicable diseases may necessitate increased vector control

    Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions

    No full text
    The evaluation of transmission reducing interventions (TRI) to control malaria widely uses membrane feeding assays. In such assays, the intensity of Plasmodium infection in the vector might affect the measured efficacy of the candidates to block transmission. Gametocyte density in the host blood is a determinant of the infection success in the mosquito, however, uncertain estimates of parasite densities and intrinsic characteristics of the infected blood can induce variability. To reduce this variation, a feasible method is to dilute infectious blood samples. We describe the effect of diluting samples of Plasmodium-containing blood samples to allow accurate relative measures of gametocyte densities and their impact on mosquito infectivity and TRI efficacy. Natural Plasmodium falciparum samples were diluted to generate a wide range of parasite densities, and fed to Anopheles coluzzii mosquitoes. This was compared with parallel dilutions conducted on Plasmodium berghei infections. We examined how blood dilution influences the observed blocking activity of anti-Pbs28 monoclonal antibody using the P. berghei/Anopheles stephensi system. In the natural species combination P. falciparum/An. coluzzii, blood dilution using heat-inactivated, infected blood as diluents, revealed positive near linear relationships, between gametocyte densities and oocyst loads in the range tested. A similar relationship was observed in the P. berghei/An. stephensi system when using a similar dilution method. In contrast, diluting infected mice blood with fresh uninfected blood dramatically increases the infectiousness. This suggests that highly infected mice blood contains inhibitory factors or reduced blood moieties, which impede infection and may in turn, lead to misinterpretation when comparing individual TRI evaluation assays. In the lab system, the transmission blocking activity of an antibody specific for Pbs28 was confirmed to be density-dependent. This highlights the need to carefully interpret evaluations of TRI candidates, regarding gametocyte densities in the P. berghei/An. stephensi system

    Antimalarial plant remedies from Burkina Faso: Their potential for prophylactic use.

    No full text
    Ethnopharmacological relevance: Saye, a combination remedy prepared from Cochlospermum planchonii Hook.f. (Cochlospermaceae), Cassia alata L. (Fabaceae) and Phyllanthus amarus Schumach. et Thonn. (Euphorbiaceae), N’Dribala, a Cochlospermum planchonii root decoction, and a fruit preparation of Azadirachta indica A. Juss. (Meliaceae) are plant remedies of the folk medicine in Burkina Faso and are commonly used by traditional healers for the treatment of malaria. Aim of the study: This study aimed at validating the antiplasmodial activity of the preparations and at estimating their potential for prophylaxis, using the murine malaria system Plasmodium berghei/Anopheles stephensi. Materials and methods: Aqueous extracts were orally administered to mice (6 animals per treatment group) at a daily dose of 200 mg/kg body weight for nine days, applying protocols that mimic as much as possible traditional recipes and treatment schemes. Results: Saye, N’Dribala and Azadirachta indica preparations revealed prophylactic activity, reducing parasitaemia in treated mice, with respect to controls, by 52.0% (CI95 46.1–57.9), 45.5% (CI95 44.5–46.5) and 45.0% (CI95 41.1–48.9), respectively. No evidence of transmission blocking effects was detected with any of the tested remedies. Conclusions: This study confirms, in the murine malaria system, the antiplasmodial properties of the examined remedies on the Plasmodium stages developing in the vertebrate host, thus encouraging studies aiming at identifying the active fractions and compounds responsible for the described activity and to develop standardized prophylactic remedies

    Predicting the public health impact of a malaria transmission-blocking vaccine

    No full text
    Transmission-blocking vaccines that interrupt malaria transmission from humans to mosquitoes are being tested in early clinical trials. The activity of such a vaccine is commonly evaluated using membrane-feeding assays. Understanding the field efficacy of such a vaccine requires knowledge of how heavily infected wild, naturally blood-fed mosquitoes are, as this indicates how difficult it will be to block transmission. Here we use data on naturally infected mosquitoes collected in Burkina Faso to translate the laboratory-estimated activity into an estimated activity in the field. A transmission dynamics model is then utilised to predict a transmission-blocking vaccine’s public health impact alongside existing interventions. The model suggests that school-aged children are an attractive population to target for vaccination. Benefits of vaccination are distributed across the population, averting the greatest number of cases in younger children. Utilising a transmission-blocking vaccine alongside existing interventions could have a substantial impact against malaria

    Experimental study of the relationship between plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions.

    Get PDF
    The evaluation of transmission reducing interventions (TRI) to control malaria widely uses membrane feeding assays. In such assays, the intensity of Plasmodium infection in the vector might affect the measured efficacy of the candidates to block transmission. Gametocyte density in the host blood is a determinant of the infection success in the mosquito, however, uncertain estimates of parasite densities and intrinsic characteristics of the infected blood can induce variability. To reduce this variation, a feasible method is to dilute infectious blood samples. We describe the effect of diluting samples of Plasmodium-containing blood samples to allow accurate relative measures of gametocyte densities and their impact on mosquito infectivity and TRI efficacy. Natural Plasmodium falciparum samples were diluted to generate a wide range of parasite densities, and fed to Anopheles coluzzi mosquitoes. This was compared with parallel dilutions conducted on Plasmodium berghei infections. We examined how blood dilution influences the observed blocking activity of anti-Pbs28 monoclonal antibody using the P. berghei / Anopheles stephensi system. In the natural species combination P falciparum/An. coluzzii, blood dilution using heat-inactivated, infected blood as diluents, revealed positive near linear relationships, between gametocyte densities and oocyst loads in the range tested. A similar relationship was observed in the P. berghei / Anopheles stephensi system when using a similar dilution method. In contrast, diluting infected mice blood with fresh uninfected blood dramatically increases the infectiousness. This suggests that highly infected mice blood contains inhibitory factors or reduced blood moieties, which impede infection and may in turn, lead to misinterpretation when comparing individual TRI evaluation assays. In the lab system, the transmission blocking activity of an antibody specific for Pbs28 was confirmed to be density-dependent. This highlights the need to carefully interpret evaluations of TRI candidates, regarding gametocyte densities in the P.berghei / Anopheles stephensi system
    corecore