140 research outputs found

    What Is Italian Antispeciesism? An Overview of Recent Tendencies in Animal Advocacy

    Get PDF
    This chapter offers an overview of the different agents currently operating in Italy as part of the animal liberation movement. It analyses the impact on this social reality by books and essays published or translated in Italian in the last 20 years in the field of Animal Ethics. From the reception of Peter Singer and Tom Regan\u2019s ideas mediated by the work of Paola Cavalieri, Italian philosophers have shaped the narratives and the rhetoric of animal advocates and liberationists. On the other side, activists\u2019 debates on the best strategies to adopt involved intellectuals and enriched their production on Animal Liberation. Groups with an intersectional approach have paid particular attention to theoretical implications and political consequences of their acts, developing radical, non-anthropocentric forms of antispeciesism

    Movement Behavior of High-Heeled Walking: How Does the Nervous System Control the Ankle Joint during an Unstable Walking Condition?

    Get PDF
    The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking

    Dynamic Patterns of Circulating Seasonal and Pandemic A(H1N1)pdm09 Influenza Viruses From 2007–2010 in and around Delhi, India

    Get PDF
    Influenza surveillance was carried out in a subset of patients with influenza-like illness (ILI) presenting at an Employee Health Clinic (EHS) at All India Institute of Medical Sciences (AIIMS), New Delhi (urban) and pediatric out patients department of civil hospital at Ballabhgarh (peri-urban), under the Comprehensive Rural Health Services Project (CRHSP) of AIIMS, in Delhi region from January 2007 to December 2010. Of the 3264 samples tested, 541 (17%) were positive for influenza viruses, of which 221 (41%) were pandemic Influenza A(H1N1)pdm09, 168 (31%) were seasonal influenza A, and 152 (28%) were influenza B. While the Influenza viruses were detected year-round, their types/subtypes varied remarkably. While there was an equal distribution of seasonal A(H1N1) and influenza B in 2007, predominance of influenza B was observed in 2008. At the beginning of 2009, circulation of influenza A(H3N2) viruses was observed, followed later by emergence of Influenza A(H1N1)pdm09 with co-circulation of influenza B viruses. Influenza B was dominant subtype in early 2010, with second wave of Influenza A(H1N1)pdm09 in August-September, 2010. With the exception of pandemic H1N1 emergence in 2009, the peaks of influenza activity coincided primarily with monsoon season, followed by minor peak in winter at both urban and rural sites. Age group analysis of influenza positivity revealed that the percent positivity of Influenza A(H1N1)pdm09 influenza virus was highest in >5–18 years age groups (OR 2.5; CI = 1.2–5.0; p = 0.009) when compared to seasonal influenza. Phylogenetic analysis of Influenza A(H1N1)pdm09 from urban and rural sites did not reveal any major divergence from other Indian strains or viruses circulating worldwide. Continued surveillance globally will help define regional differences in influenza seasonality, as well as, to determine optimal periods to implement influenza vaccination programs among priority populations

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    A Role for the RNA Chaperone Hfq in Controlling Adherent-Invasive Escherichia coli Colonization and Virulence

    Get PDF
    Adherent-invasive Escherichia coli (AIEC) has been linked with the onset and perpetuation of inflammatory bowel diseases. The AIEC strain LF82 was originally isolated from an ileal biopsy from a patient with Crohn's disease. The pathogenesis of LF82 results from its abnormal adherence to and subsequent invasion of the intestinal epithelium coupled with its ability to survive phagocytosis by macrophages once it has crossed the intestinal barrier. To gain further insight into AIEC pathogenesis we employed the nematode Caenorhabditis elegans as an in vivo infection model. We demonstrate that AIEC strain LF82 forms a persistent infection in C. elegans, thereby reducing the host lifespan significantly. This host killing phenotype was associated with massive bacterial colonization of the nematode intestine and damage to the intestinal epithelial surface. C. elegans killing was independent of known LF82 virulence determinants but was abolished by deletion of the LF82 hfq gene, which encodes an RNA chaperone involved in mediating posttranscriptional gene regulation by small non-coding RNAs. This finding reveals that important aspects of LF82 pathogenesis are controlled at the posttranscriptional level by riboregulation. The role of Hfq in LF82 virulence was independent of its function in regulating RpoS and RpoE activity. Further, LF82Δhfq mutants were non-motile, impaired in cell invasion and highly sensitive to various chemical stress conditions, reinforcing the multifaceted function of Hfq in mediating bacterial adaptation. This study highlights the usefulness of simple non-mammalian infection systems for the identification and analysis of bacterial virulence factors

    Using combined diagnostic test results to hindcast trends of infection from cross-sectional data

    Get PDF
    Infectious disease surveillance is key to limiting the consequences from infectious pathogens and maintaining animal and public health. Following the detection of a disease outbreak, a response in proportion to the severity of the outbreak is required. It is thus critical to obtain accurate information concerning the origin of the outbreak and its forward trajectory. However, there is often a lack of situational awareness that may lead to over- or under-reaction. There is a widening range of tests available for detecting pathogens, with typically different temporal characteristics, e.g. in terms of when peak test response occurs relative to time of exposure. We have developed a statistical framework that combines response level data from multiple diagnostic tests and is able to ‘hindcast’ (infer the historical trend of) an infectious disease epidemic. Assuming diagnostic test data from a cross-sectional sample of individuals infected with a pathogen during an outbreak, we use a Bayesian Markov Chain Monte Carlo (MCMC) approach to estimate time of exposure, and the overall epidemic trend in the population prior to the time of sampling. We evaluate the performance of this statistical framework on simulated data from epidemic trend curves and show that we can recover the parameter values of those trends. We also apply the framework to epidemic trend curves taken from two historical outbreaks: a bluetongue outbreak in cattle, and a whooping cough outbreak in humans. Together, these results show that hindcasting can estimate the time since infection for individuals and provide accurate estimates of epidemic trends, and can be used to distinguish whether an outbreak is increasing or past its peak. We conclude that if temporal characteristics of diagnostics are known, it is possible to recover epidemic trends of both human and animal pathogens from cross-sectional data collected at a single point in time

    Post-exposure prophylaxis during pandemic outbreaks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the rise of the second pandemic wave of the novel influenza A (H1N1) virus in the current season in the Northern Hemisphere, pandemic plans are being carefully re-evaluated, particularly for the strategic use of antiviral drugs. The recent emergence of oseltamivir-resistant in treated H1N1 patients has raised concerns about the prudent use of neuraminidase inhibitors for both treatment of ill individuals and post-exposure prophylaxis of close contacts.</p> <p>Methods</p> <p>We extended an established population dynamical model of pandemic influenza with treatment to include post-exposure prophylaxis of close contacts. Using parameter estimates published in the literature, we simulated the model to evaluate the combined effect of treatment and prophylaxis in minimizing morbidity and mortality of pandemic infections in the context of transmissible drug resistance.</p> <p>Results</p> <p>We demonstrated that, when transmissible resistant strains are present, post-exposure prophylaxis can promote the spread of resistance, especially when combined with aggressive treatment. For a given treatment level, there is an optimal coverage of prophylaxis that minimizes the total number of infections (final size) and this coverage decreases as a higher proportion of infected individuals are treated. We found that, when treatment is maintained at intermediate levels, limited post-exposure prophylaxis provides an optimal strategy for reducing the final size of the pandemic while minimizing the total number of deaths. We tested our results by performing a sensitivity analysis over a range of key model parameters and observed that the incidence of infection depends strongly on the transmission fitness of resistant strains.</p> <p>Conclusion</p> <p>Our findings suggest that, in the presence of transmissible drug resistance, strategies that prioritize the treatment of only ill individuals, rather than the prophylaxis of those suspected of being exposed, are most effective in reducing the morbidity and mortality of the pandemic. The impact of post-exposure prophylaxis depends critically on the treatment level and the transmissibility of resistant strains and, therefore, enhanced surveillance and clinical monitoring for resistant mutants constitutes a key component of any comprehensive plan for antiviral drug use during an influenza pandemic.</p
    corecore