1,431 research outputs found

    Exploitation promotes earlier sex change in a protandrous patellid limpet, Patella aspera Röding, 1798

    Get PDF
    Exploitation of organisms can prompt the reduction in the number and size of target populations consequently affecting reproductive output and replenishment. Here, we investigated the effects of exploitation on the population structure of a protandrous patellid limpet, Patella aspera, an overexploited Macaronesian endemic. Timed dives were used to collect animals across eleven islands of Macaronesia. Individuals were inspected for sex, size, and gonad stage. Using catch effort (time per person) per island coastal perimeter as a surrogate for exploitation intensity, we found that limpet abundance (CPUE) and mean size tended to decrease with exploitation intensity. When considering the sex of animals separately, the size of the largest male, but not females, decreased with exploitation. In contrast, the size of the smallest male remained relatively consistent, whereas the size of the smallest female decreased significantly with exploitation. As exploitation is mostly targeting larger individuals, results suggest that males are compensating the removal of larger females, by undergoing sex change at smaller and presumably earlier sizes. These results have wider implications for the conservation of P. aspera, as a reduction in female size will likely affect the numbers of oocytes produced, hence fecundity. Regulations promoting the protection of the larger-sized animals should be enforced to safeguard the replenishment of the population

    Cellular prion protein protects from inflammatory and neuropathic pain

    Get PDF
    Cellular prion protein (PrPC) inhibits N-Methyl-D-Aspartate (NMDA) receptors. Since NMDA receptors play an important role in the transmission of pain signals in the dorsal horn of spinal cord, we thus wanted to determine if PrPC null mice show a reduced threshold for various pain behaviours

    Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein

    Get PDF
    We have investigated the intracellular traffic of PrPc, a glycosylphosphatidylinositol (GPI)-anchored protein implicated in spongiform encephalopathies. A fluorescent functional green fluorescent protein (GFP)-tagged version of PrPc is found at the cell surface and in intracellular compartments in SN56 cells. Confocal microscopy and organelle-specific markers suggest that the protein is found in both the Golgi and the recycling endosomal compartment. Perturbation of endocytosis with a dynamin I-K44A dominant-negative mutant altered the steady-state distribution of the GFP-PrPc, leading to the accumulation of fluorescence in unfissioned endocytic intermediates. These pre-endocytic intermediates did not seem to accumulate GFP-GPI, a minimum GPI-anchored protein, suggesting that PrPc trafficking does not depend solely on the GPI anchor. We found that internalized GFP-PrPc accumulates in Rab5-positive endosomes and that a Rab5 mutant alters the steady-state distribution of GFP-PrPc but not that of GFP-GPI between the plasma membrane and early endosomes. Therefore, we conclude that PrPc internalizes via a dynamin-dependent endocytic pathway and that the protein is targeted to the recycling endosomal compartment via Rab5-positive early endosomes. These observations indicate that traffic of GFP-PrPc is not determined predominantly by the GPI anchor and that, different from other GPI-anchored proteins, PrPc is delivered to classic endosomes after internalization

    Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    Get PDF
    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs

    "Detachment of the carinal hook following endobronchial intubation with a double lumen tube"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carinal hooks increases difficulty at endotracheal intubation. Amputation of the carinal hook during passage and malpositioning of the tube to the hook are some of the potential problems related with left-sided Carlens double lumen tube (DLT). This article reports an amputation of the hook during a difficult selective intubation and aimed at calling the attention to complications associated with DLTs and the importance of fiberoptic bronchoscopy.</p> <p>Case presentation</p> <p>A 68 year-old woman was scheduled for right-sided thoracotomy in whom blind DLT insertion was performed. Narrowed trachea causes difficulty in rotating the DLT 90° counter-clockwise. After carinal hook was noticed upon visual inspection of the DLT, fiberoptic bronchoscopy was used to remove the missing part (with the use of forceps) from the right mainstem bronchus.</p> <p>Conclusion</p> <p>Insertion of DLTs with carinal hook is associated with technical problems and potentially life-threatening hazards have discouraged their use. Fiberoptic evaluation and repositioning solves most of the problems. Although amputation of the carinal hook has not been previously reported, clinicians should be alert. This case report emphasizes the utility of the fiberoptic bronchoscopy in the operating theatre for placement, positioning and inspection of the carinal hook DLT.</p

    A review of techniques for spatial modeling in geographical, conservation and landscape genetics

    Get PDF
    Most evolutionary processes occur in a spatial context and several spatial analysis techniques have been employed in an exploratory context. However, the existence of autocorrelation can also perturb significance tests when data is analyzed using standard correlation and regression techniques on modeling genetic data as a function of explanatory variables. In this case, more complex models incorporating the effects of autocorrelation must be used. Here we review those models and compared their relative performances in a simple simulation, in which spatial patterns in allele frequencies were generated by a balance between random variation within populations and spatially-structured gene flow. Notwithstanding the somewhat idiosyncratic behavior of the techniques evaluated, it is clear that spatial autocorrelation affects Type I errors and that standard linear regression does not provide minimum variance estimators. Due to its flexibility, we stress that principal coordinate of neighbor matrices (PCNM) and related eigenvector mapping techniques seem to be the best approaches to spatial regression. In general, we hope that our review of commonly used spatial regression techniques in biology and ecology may aid population geneticists towards providing better explanations for population structures dealing with more complex regression problems throughout geographic space

    Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors

    Get PDF
    Age-related macular degeneration and other macular diseases result in the loss of light-sensing cone photoreceptors, causing irreversible sight impairment. Photoreceptor replacement may restore vision by transplanting healthy cells, which must form new synaptic connections with the recipient retina. Despite recent advances, convincing evidence of functional connectivity arising from transplanted human cone photoreceptors in advanced retinal degeneration is lacking. Here, we show restoration of visual function after transplantation of purified human pluripotent stem cell-derived cones into a mouse model of advanced degeneration. Transplanted human cones elaborate nascent outer segments and make putative synapses with recipient murine bipolar cells (BCs), which themselves undergo significant remodeling. Electrophysiological and behavioral assessments demonstrate restoration of surprisingly complex light-evoked retinal ganglion cell responses and improved light-evoked behaviors in treated animals. Stringent controls exclude alternative explanations, including material transfer and neuroprotection. These data provide crucial validation for photoreceptor replacement therapy and for the potential to rescue cone-mediated vision

    Sperm design and variation in the New World blackbirds (Icteridae)

    Get PDF
    Post-copulatory sexual selection (PCSS) is thought to be one of the evolutionary forces responsible for the rapid and divergent evolution of sperm design. However, whereas in some taxa particular sperm traits are positively associated with PCSS, in other taxa, these relationships are negative, and the causes of these different patterns across taxa are poorly understood. In a comparative study using New World blackbirds (Icteridae), we tested whether sperm design was influenced by the level of PCSS and found significant positive associations with the level of PCSS for all sperm components but head length. Additionally, whereas the absolute length of sperm components increased, their variation declined with the intensity of PCSS, indicating stabilizing selection around an optimal sperm design. Given the diversity of, and strong selection on, sperm design, it seems likely that sperm phenotype may influence sperm velocity within species. However, in contrast to other recent studies of passerine birds, but consistent with several other studies, we found no significant link between sperm design and velocity, using four different species that vary both in sperm design and PCSS. Potential reasons for this discrepancy between studies are discussed

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al
    • …
    corecore