699 research outputs found

    Repellent and Attractant Guidance Cues Initiate Cell Migration by Distinct Rear-Driven and Front-Driven Cytoskeletal Mechanisms.

    Get PDF
    Attractive and repulsive cell guidance is essential for animal life and important in disease. Cell migration toward attractants dominates studies [1-8], but migration away from repellents is important in biology yet relatively little studied [5, 9, 10]. It is widely held that cells initiate migration by protrusion of their front [11-15], yet this has not been explicitly tested for cell guidance because cell margin displacement at opposite ends of the cell has not been distinguished for any cue. We argue that protrusion of the front, retraction of the rear, or both together could in principle break cell symmetry and start migration in response to guidance cues [16]. Here, we find in the Dictyostelium model [6] that an attractant-cAMP-breaks symmetry by causing protrusion of the front of the cell, whereas its repellent analog-8CPT-breaks symmetry by causing retraction of the rear. Protrusion of the front of these cells in response to cAMP starts with local actin filament assembly, while the delayed retraction of the rear is independent of both myosin II polarization and of motor-based contractility. On the contrary, myosin II accumulates locally in the rear of the cell in response to 8CPT, anticipating retraction and required for it, while local actin assembly is delayed and couples to delayed protrusion at the front. These data reveal an important new concept in the understanding of cell guidance

    Teaching periodontal pocket charting to dental students: a comparison of computer assisted learning and traditional tutorials

    Get PDF
    AIM: The aim of this study was to compare the effectiveness of a computer assisted learning (CAL) programme with that of traditional small group tutorials in teaching theoretical and practical aspects of periodontal pocket charting. METHOD: Sixty-one third year undergraduate dental students were randomized to either receive a tutorial or to work through the CAL programme. Students using the CAL programme completed questionnaires relating to previous computer experience and the ease of use of the programme. All students were assessed immediately after the intervention by means of a confidence log, a practical exercise and a further confidence log. They were assessed again three weeks later by means of a confidence log and a multiple-choice written test. RESULTS: There were very few significant differences between groups for any of the assessments used. However, subjective comments indicated that students occasionally felt disadvantaged if they had not received a tutorial. CONCLUSION: CAL and traditional teaching methods are equally effective in teaching periodontal pocket charting to undergraduate dental students

    Characterization of the Covalently Bound Anionic Flavin Radical in Monoamine Oxidase A by Electron Paramagnetic Resonance

    Get PDF
    It was recently suggested that partially reduced monoamine oxidase (MAO) A contains an equilibrium mixture of an anionic flavin radical and a tyrosyl radical (Rigby, S. E.; et al. J. Biol. Chem. 2005, 280, 4627-4632). These observations formed the basis for a revised radical mechanism for MAO. In contrast, an earlier study of MAO B only found evidence for an anionic flavin radical (DeRose, V. J.; et al. Biochemistry 1996, 35, 11085-11091). To resolve the discrepancy, we have performed continuous-wave electron paramagnetic resonance at 94 GHz (W-band) on the radical form of MAO A. A comparison with D-amino acid oxidase (DAAO) demonstrates that both enzymes only contain anionic flavin radicals. Pulsed electron-nuclear double resonance spectra of the two enzymes recorded at 9 GHz (X-band) reveal distinct hyperfine coupling patterns for the two flavins. Density functional theory calculations show that these differences can be understood in terms of the difference at C8 of the isoalloxazine ring. DAAO contains a noncovalently bound flavin whereas MAO A contains a flavin covalently bound to a cysteinyl residue at C8. The similar electronic structures and hydrophobic environments of MAO and DAAO, and the similar structural motifs of their substrates suggest that a direct hydride transfer catalytic mechanism established for DAAO (Umhau, S.; et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12463-12468) should be considered for MAO

    Method to study cell migration under uniaxial compression

    Get PDF
    The chemical, physical, and mechanical properties of the extracellular environment have a strong effect on cell migration. Aspects such as pore size or stiffness of the matrix influence the selection of the mechanism used by cells to propel themselves, including by pseudopods or blebbing. How a cell perceives its environment and how such a cue triggers a change in behavior are largely unknown, but mechanics is likely to be involved. Because mechanical conditions are often controlled by modifying the composition of the environment, separating chemical and physical contributions is difficult and requires multiple controls. Here we propose a simple method to impose a mechanical compression on individual cells without altering the composition of the matrix. Live imaging during compression provides accurate information about the cell's morphology and migratory phenotype. Using Dictyostelium as a model, we observe that a compression of the order of 500 Pa flattens the cells under gel by up to 50%. This uniaxial compression directly triggers a transition in the mode of migration from primarily pseudopodial to bleb driven in <30 s. This novel device is therefore capable of influencing cell migration in real time and offers a convenient approach with which to systematically study mechanotransduction in confined environments.This work is supported by a Dr. Manmohan Singh Scholarship from St. John's College to N.S., Medical Research Council Core Funding MC_U105115237 to R.R.K., and Biotechnology and Biological Sciences Research Council Grant BB/K018175/1 to A.J.K

    Interocular Symmetry of Foveal Cone Topography in Congenital Achromatopsia

    Get PDF
    PURPOSE: To determine interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). METHODS: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8 - 44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of intercell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. RESULTS: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm2 and 17,638 ± 9,753 cones/mm2 for right and left eyes, respectively (p = 0.677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = 0.410, paired t test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = 0.562, paired t test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. CONCLUSIONS: These results demonstrate interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control

    Genetic Engineering of Dictyostelium discoideum Cells Based on Selection and Growth on Bacteria

    Get PDF
    Dictyostelium discoideum is an intriguing model organism for the study of cell differentiation processes during development, cell signaling, and other important cellular biology questions. The technologies available to genetically manipulate Dictyostelium cells are well-developed. Transfections can be performed using different selectable markers and marker re-cycling, including homologous recombination and insertional mutagenesis. This is supported by a well-annotated genome. However, these approaches are optimized for axenic cell lines growing in liquid cultures and are difficult to apply to non-axenic wild-type cells, which feed only on bacteria. The mutations that are present in axenic strains disturb Ras signaling, causing excessive macropinocytosis required for feeding, and impair cell migration, which confounds the interpretation of signal transduction and chemotaxis experiments in those strains. Earlier attempts to genetically manipulate non-axenic cells have lacked efficiency and required complex experimental procedures. We have developed a simple transfection protocol that, for the first time, overcomes these limitations. Those series of large improvements to Dictyostelium molecular genetics allow wild-type cells to be manipulated as easily as standard laboratory strains. In addition to the advantages for studying uncorrupted signaling and motility processes, mutants that disrupt macropinocytosis-based growth can now be readily isolated. Furthermore, the entire transfection workflow is greatly accelerated, with recombinant cells that can be generated in days rather than weeks. Another advantage is that molecular genetics can further be performed with freshly isolated wild-type Dictyostelium samples from the environment. This can help to extend the scope of approaches used in these research areas

    Community ecology of the Middle Miocene primates of La Venta, Colombia: the relationship between ecological diversity, divergence time, and phylogenetic richness

    Get PDF
    It has been suggested that the degree of ecological diversity that characterizes a primate community correlates positively with both its phylogenetic richness and the time since the members of that community diverged (Fleagle and Reed in Primate communities. Cambridge University Press, New York, pp 92–115, 1999). It is therefore questionable whether or not a community with a relatively recent divergence time but high phylogenetic richness would be as ecologically variable as a community with similar phylogenetic richness but a more distant divergence time. To address this question, the ecological diversity of a fossil primate community from La Venta, Colombia, a Middle Miocene platyrrhine community with phylogenetic diversity comparable with extant platyrrhine communities but a relatively short time since divergence, was compared with that of modern Neotropical primate communities. Shearing quotients and molar lengths, which together are reliable indicators of diet, for both fossil and extant species were plotted against each other to describe the dietary “ecospace” occupied by each community. Community diversity was calculated as the area of the minimum convex polygon encompassing all community members. The diversity of the fossil community was then compared with that of extant communities to test whether the fossil community was less diverse than extant communities while taking phylogenetic richness into account. Results indicate that the La Ventan community was not significantly less ecologically diverse than modern communities, supporting the idea that ecological diversification occurred along with phylogenetic diversification early in platyrrhine evolution

    In vivo imaging and quantitative analysis of leukocyte directional migration and polarization in inflamed tissue

    Get PDF
    Directional migration of transmigrated leukocytes to the site of injury is a central event in the inflammatory response. Here, we present an in vivo chemotaxis assay enabling the visualization and quantitative analysis of subtype-specific directional motility and polarization of leukocytes in their natural 3D microenvironment. Our technique comprises the combination of i) semi-automated in situ microinjection of chemoattractants or bacteria as local chemotactic stimulus, ii) in vivo near-infrared reflected-light oblique transillumination (RLOT) microscopy for the visualization of leukocyte motility and morphology, and iii) in vivo fluorescence microscopy for the visualization of different leukocyte subpopulations or fluorescence-labeled bacteria. Leukocyte motility parameters are quantified off-line in digitized video sequences using computer-assisted single cell tracking. Here, we show that perivenular microinjection of chemoattractants [macrophage inflammatory protein-1alpha (MIP-1alpha/Ccl3), platelet-activating factor (PAF)] or E. coli into the murine cremaster muscle induces target-oriented intravascular adhesion and transmigration as well as polarization and directional interstitial migration of leukocytes towards the locally administered stimuli. Moreover, we describe a crucial role of Rho kinase for the regulation of directional motility and polarization of transmigrated leukocytes in vivo. Finally, combining in vivo RLOT and fluorescence microscopy in Cx3CR1(gfp/gfp) mice (mice exhibiting green fluorescent protein-labeled monocytes), we are able to demonstrate differences in the migratory behavior of monocytes and neutrophils.Taken together, we propose a novel approach for investigating the mechanisms and spatiotemporal dynamics of subtype-specific motility and polarization of leukocytes during their directional interstitial migration in vivo

    Evaluating Depressive Symptoms in Schizophrenia: A Psychometric Comparison of the Calgary Depression Scale for Schizophrenia and the Hamilton Depression Rating Scale

    Get PDF
    Background: The aim of this study was to compare two measures of depression in patients with schizophrenia and schizophrenia spectrum disorder, including patients with delusional and schizoaffective disorder, to conclude implications for their application. Sampling and Methods: A total of 278 patients were assessed using the Calgary Depression Scale for Schizophrenia (CDSS) and the Hamilton Depression Rating Scale (HAMD-17). The Positive and Negative Syndrome Scale (PANSS) was also applied. At admission and discharge, a principal component analysis was performed with each depression scale. The two depression rating scales were furthermore compared using correlation and regression analyses. Results: Three factors were revealed for the CDSS and HAMD-17 factor component analysis. A very similar item loading was found for the CDSS at admission and discharge, whereas results of the loadings of the HAMD-17 items were less stable. The first two factors of the CDSS revealed correlations with positive, negative and general psychopathology. In contrast, multiple significant correlations were found for the HAMD-17 factors and the PANSS sub-scores. Multiple regression analyses demonstrated that the HAMD-17 accounted more for the positive and negative symptom domains than the CDSS. Conclusions:The present results suggest that compared to the HAMD-17, the CDSS is a more specific instrument to measure depressive symptoms in schizophrenia and schizophrenia spectrum disorder, especially in acutely ill patients. Copyright (c) 2012 S. Karger AG, Base

    The Atypical MAP Kinase ErkB Transmits Distinct Chemotactic Signals through a Core Signaling Module

    Get PDF
    Signaling from chemoattractant receptors activates the cytoskeleton of crawling cells for chemotaxis. We show using phosphoproteomics that different chemoattractants cause phosphorylation of the same core set of around 80 proteins in Dictyostelium cells. Strikingly, the majority of these are phosphorylated at an [S/T]PR motif by the atypical MAP kinase ErkB. Unlike most chemotactic responses, ErkB phosphorylations are persistent and do not adapt to sustained stimulation with chemoattractant. ErkB integrates dynamic autophosphorylation with chemotactic signaling through G-protein-coupled receptors. Downstream, our phosphoproteomics data define a broad panel of regulators of chemotaxis. Surprisingly, targets are almost exclusively other signaling proteins, rather than cytoskeletal components, revealing ErkB as a regulator of regulators rather than acting directly on the motility machinery. ErkB null cells migrate slowly and orientate poorly over broad dynamic ranges of chemoattractant. Our data indicate a central role for ErkB and its substrates in directing chemotaxis
    corecore