35 research outputs found

    Efficient Induction of Extrinsic Cell Death by Dandelion Root Extract in Human Chronic Myelomonocytic Leukemia (CMML) Cells

    Get PDF
    BACKGROUND: Chronic Myelomonocytic Leukemia (CMML) is a heterogeneous disease that is not only hard to diagnose and classify, but is also highly resistant to treatment. Available forms of therapy for this disease have not shown significant effects and patients rapidly develop resistance early on in therapy. These factors lead to the very poor prognosis observed with CMML patients, with median survival duration between 12 and 24 months after diagnosis. This study is therefore centered around evaluating the selective efficacy of a natural extract from dandelion roots, in inducing programmed cell death in aggressive and resistant CMML cell lines. METHODOLOGY/PRINCIPAL FINDINGS: To confirm the induction of programmed cell death in three human CMML cell lines, nuclear condensation and externalization of the phosphatidylserine, two main characteristics of apoptosis, were detected using Hoechst staining and annexin-V binding assay. The induction of another mode of cell death, autophagy, was determined using a monodansylcadaverine (MDC) stain, to detect the formation of autophagy vacuoles. The results from this study indicate that Dandelion Root Extract (DRE) is able to efficiently and selectively induce apoptosis and autophagy in these cell lines in a dose and time dependent manner, with no significant toxicity on non-cancerous peripheral blood mononuclear cells. More importantly, we observed early activation of initiator caspase-8, which led to mitochondrial destabilization and the induction of autophagy, suggesting that DRE acts through the extrinsic pathway of apoptosis. The inability of DRE to induce apoptosis in dominant-negative FADD cells, confirms the mechanism of action of DRE in in vitro models of CMML. CONCLUSION: The results from this study indicate that natural products, in particular Dandelion Root Extract, have great potential, as non-toxic and effective alternatives to conventional modes of chemotherapy available today

    Thy1+ Nk Cells from Vaccinia Virus-Primed Mice Confer Protection against Vaccinia Virus Challenge in the Absence of Adaptive Lymphocytes

    Get PDF
    While immunological memory has long been considered the province of T- and B- lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1+ subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1+ NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance

    A Network of Conserved Damage Survival Pathways Revealed by a Genomic RNAi Screen

    Get PDF
    Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking. Further, by comparing data from different model organisms, identification of conserved and presumably core survival components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways, affecting cellular survival of MMS–induced damage. As expected, the majority of these pathways are involved in DNA repair; however, several pathways with more diverse biological functions were also identified, including the TOR pathway, transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating the components of the 13 identified pathways within the network. Grouping proteins into “pathway nodes” qualitatively improved the interactome organization, revealing a highly organized “MMS survival network.” We conclude that identification of pathways can facilitate comparative biology analysis when direct gene/orthologue comparisons fail. A biologically intuitive, highly interconnected MMS survival network was revealed after we incorporated pathway data in our interactome analysis

    Latitudinal Gradients in Degradation of Marine Dissolved Organic Carbon

    Get PDF
    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir, such a change could profoundly affect the global carbon cycle

    Pretransplant Prediction of Posttransplant Survival for Liver Recipients with Benign End-Stage Liver Diseases: A Nonlinear Model

    Get PDF
    Background: The scarcity of grafts available necessitates a system that considers expected posttransplant survival, in addition to pretransplant mortality as estimated by the MELD. So far, however, conventional linear techniques have failed to achieve sufficient accuracy in posttransplant outcome prediction. In this study, we aim to develop a pretransplant predictive model for liver recipients ’ survival with benign end-stage liver diseases (BESLD) by a nonlinear method based on pretransplant characteristics, and compare its performance with a BESLD-specific prognostic model (MELD) and a generalillness severity model (the sequential organ failure assessment score, or SOFA score). Methodology/Principal Findings: With retrospectively collected data on 360 recipients receiving deceased-donor transplantation for BESLD between February 1999 and August 2009 in the west China hospital of Sichuan university, we developed a multi-layer perceptron (MLP) network to predict one-year and two-year survival probability after transplantation. The performances of the MLP, SOFA, and MELD were assessed by measuring both calibration ability and discriminative power, with Hosmer-Lemeshow test and receiver operating characteristic analysis, respectively. By the forward stepwise selection, donor age and BMI; serum concentration of HB, Crea, ALB, TB, ALT, INR, Na +; presence of pretransplant diabetes; dialysis prior to transplantation, and microbiologically proven sepsis were identified to be the optimal input features. The MLP, employing 18 input neurons and 12 hidden neurons, yielded high predictive accuracy, wit

    Busulphan-Cyclophosphamide Cause Endothelial Injury, Remodeling of Resistance Arteries and Enhanced Expression of Endothelial Nitric Oxide Synthase

    Get PDF
    Stem cell transplantation (SCT) is a curative treatment for malignant and non malignant diseases. However, transplantation-related complications including cardiovascular disease deteriorate the clinical outcome and quality of life. We have investigated the acute effects of conditioning regimen on the pharmacology, physiology and structure of large elastic arteries and small resistance-sized arteries in a SCT mouse model. Mesenteric resistance arteries and aorta were dissected from Balb/c mice conditioned with busulphan (Bu) and cyclophosphamide (Cy). In vitro isometric force development and pharmacology, in combination with RT-PCR, Western blotting and electron microscopy were used to study vascular properties. Compared with controls, mesenteric resistance arteries from the Bu-Cy group had larger internal circumference, showed enhanced endothelium mediated relaxation and increased expression of endothelial nitric oxide synthase (eNOS). Bu-Cy treated animals had lower mean blood pressure and signs of endothelial injury. Aortas of treated animals had a higher reactivity to noradrenaline. We conclude that short-term consequences of Bu-Cy treatment divergently affect large and small arteries of the cardiovascular system. The increased noradrenaline reactivity of large elastic arteries was not associated with increased blood pressure at rest. Instead, Bu-Cy treatment lowered blood pressure via augmented microvascular endothelial dependent relaxation, increased expression of vascular eNOS and remodeling toward a larger lumen. The changes in the properties of resistance arteries can be associated with direct effects of the compounds on vascular wall or possibly indirectly induced via altered translational activity associated with the reduced hematocrit and shear stress. This study contributes to understanding the mechanisms that underlie the early effects of conditioning regimen on resistance arteries and may help in designing further investigations to understand the late effects on vascular system

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk
    corecore