8 research outputs found

    Simukunin from the Salivary Glands of the Black Fly Simulium vittatum Inhibits Enzymes That Regulate Clotting and Inflammatory Responses

    Get PDF
    BACKGROUND: Black flies (Diptera: Simuliidae) feed on blood, and are important vectors of Onchocerca volvulus, the etiolytic agent of River Blindness. Blood feeding depends on pharmacological properties of saliva, including anticoagulation, but the molecules responsible for this activity have not been well characterized. METHODOLOGY/PRINCIPAL FINDINGS: Two Kunitz family proteins, SV-66 and SV-170, were identified in the sialome of the black fly Simulium vittatum. As Kunitz proteins are inhibitors of serine proteases, we hypothesized that SV-66 and/or -170 were involved in the anticoagulant activity of black fly saliva. Our results indicated that recombinant (r) SV-66 but not rSV-170 inhibited plasma coagulation. Mutational analysis suggested that SV-66 is a canonical BPTI-like inhibitor. Functional assays indicated that rSV66 reduced the activity of ten serine proteases, including several involved in mammalian coagulation. rSV-66 most strongly inhibited the activity of Factor Xa, elastase, and cathepsin G, exhibited lesser inhibitory activity against Factor IXa, Factor XIa, and plasmin, and exhibited no activity against Factor XIIa and thrombin. Surface plasmon resonance studies indicated that rSV-66 bound with highest affinity to elastase (K(D) = 0.4 nM) and to the active site of FXa (K(D) = 3.07 nM). We propose the name "Simukunin" for this novel protein. CONCLUSIONS: We conclude that Simukunin preferentially inhibits Factor Xa. The inhibition of elastase and cathepsin G further suggests this protein may modulate inflammation, which could potentially affect pathogen transmission

    Isolation, Cloning and Structural Characterisation of Boophilin, a Multifunctional Kunitz-Type Proteinase Inhibitor from the Cattle Tick

    Get PDF
    Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine α-thrombin·boophilin complex, refined at 2.35 Å resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9° and is displaced by 6 Å, while the C-terminal domain rotates almost 6° accompanied by a 3 Å displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin·boophilin·trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo

    <i>In vitro</i> antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19

    Get PDF
    BackgroundCurrent approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity.MethodsSARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19.ResultsDaclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 μM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans.ConclusionsDaclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy

    Group A rotavirus genotypes and the ongoing Brazilian experience: a review

    No full text
    Brazil was the first Latin American country to introduce universal group A rotavirus (RV-A) vaccination in March 2006, resulting in a unique epidemiological scenario. Since RV-A first identification in Brazil, 2,691 RV-A-positive stool samples, collected between 1982- 2007, were typed by independent research groups throughout the country. In the pre-vaccination era, 2,492 RV-A-positive samples collected from 1982-2005 were successfully typed, while 199 samples were analyzed from 2006-2007. According to the reviewed studies, there were two important times in the pre-vaccination era: (i) the period from 1982-1995, during which the detection of G5P[8] RV-A, in addition to the classical genotypes G1-4, challenged vaccine development programs; and (ii) the period from 1996-2005, during which genotype G9P[8] emerged, following a global trend. The rate of G2P[4] RV-A detection decreased from 26% (173/653) during 1982-1995 to 2% (43/1,839) during 1996-2005. The overall detection rate of RV-A genotypes from 1982-2005 was as follows: 43% (n = 1,079) G1P[8]/G1P[not typed (NT)]; 20% (n = 488) G9P[8]/G9P[NT]; 9% (n = 216) G2P[4]/G2P[NT]; 6% (n = 151) G3P[8]/G3P[NT]; 4% (n = 103) G4P[8]/G4P[NT]; and 4% (n = 94) G5P[8]/G5P[NT]. Mixed infections accounted for 189 (7%) of the positive samples, while atypical G/P combinations or other genotypes, including G6, G8, G10 and G12, were identified in 172 (7%) samples. The initial surveillance studies carried out in several Brazilian states with RV-A-positive samples collected in 2006 and 2007 show a predominance of G2P[4] strains (148/199 or 74%). Herein, we review RV-A typing studies carried out since the 1980s in Brazil, highlighting the dynamics of RV-A strain circulation profiles before and early after universal use of RV-A vaccine in Brazil
    corecore