296 research outputs found
Next generation sequencing has lower sequence coverage and poorer SNP-detection capability in the regulatory regions
The rapid development of next generation sequencing (NGS) technology provides a new chance to extend the scale and resolution of genomic research. How to efficiently map millions of short reads to the reference genome and how to make accurate SNP calls are two major challenges in taking full advantage of NGS. In this article, we reviewed the current software tools for mapping and SNP calling, and evaluated their performance on samples from The Cancer Genome Atlas (TCGA) project. We found that BWA and Bowtie are better than the other alignment tools in comprehensive performance for Illumina platform, while NovoalignCS showed the best overall performance for SOLiD. Furthermore, we showed that next-generation sequencing platform has significantly lower coverage and poorer SNP-calling performance in the CpG islands, promoter and 5′-UTR regions of the genome. NGS experiments targeting for these regions should have higher sequencing depth than the normal genomic region
D-Ribose Induces Cellular Protein Glycation and Impairs Mouse Spatial Cognition
BACKGROUND: D-ribose, an important reducing monosaccharide, is highly active in the glycation of proteins, and results in the rapid production of advanced glycation end products (AGEs) in vitro. However, whether D-ribose participates in glycation and leads to production of AGEs in vivo still requires investigation. METHODOLOGY/PRINCIPAL FINDINGS: Here we treated cultured cells and mice with D-ribose and D-glucose to compare ribosylation and glucosylation for production of AGEs. Treatment with D-ribose decreased cell viability and induced more AGE accumulation in cells. C57BL/6J mice intraperitoneally injected with D-ribose for 30 days showed high blood levels of glycated proteins and AGEs. Administration of high doses D-ribose also accelerated AGE formation in the mouse brain and induced impairment of spatial learning and memory ability according to the performance in Morris water maze test. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that D-ribose but not D-glucose reacts rapidly with proteins and produces significant amounts of AGEs in both cultured cells and the mouse brain, leading to accumulation of AGEs which may impair mouse spatial cognition
Evaluation of next-generation sequencing software in mapping and assembly
Next-generation high-throughput DNA sequencing technologies have advanced progressively in sequence-based genomic research and novel biological applications with the promise of sequencing DNA at unprecedented speed. These new non-Sanger-based technologies feature several advantages when compared with traditional sequencing methods in terms of higher sequencing speed, lower per run cost and higher accuracy. However, reads from next-generation sequencing (NGS) platforms, such as 454/Roche, ABI/SOLiD and Illumina/Solexa, are usually short, thereby restricting the applications of NGS platforms in genome assembly and annotation. We presented an overview of the challenges that these novel technologies meet and particularly illustrated various bioinformatics attempts on mapping and assembly for problem solving. We then compared the performance of several programs in these two fields, and further provided advices on selecting suitable tools for specific biological applications.published_or_final_versio
miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample
<p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small endogenous non-coding interfering RNA molecules regarded as major regulators in eukaryotic gene expression. Different methods are employed for miRNA expression profiling. For a better understanding of their role in essential biological processes, convenient methods for differential miRNA expression analysis are required.</p> <p>Results</p> <p>Here, we present the miR-Q assay as a highly sensitive quantitative reverse transcription PCR (qRT-PCR) for expression analysis of small RNAs such as miRNA molecules. It shows a high dynamic range of 6 to 8 orders of magnitude comprising a sensitivity of up to 0.2 fM miRNA, which corresponds to single copies per cell. There is nearly no cross reaction among closely-related miRNA family members, which points to the high specificity of the assays. Using this approach, we quantified the expression of let-7b in different human cell lines as well as miR-145 and miR-21 expression in porcine intestinal samples.</p> <p>Conclusion</p> <p>miR-Q is a cost-effective and highly specific approach, which neither requires the use of fluorochromic probes, nor Locked Nucleic Acid (LNA)-modified oligonucleotides. Moreover, it provides a remarkable increase in specificity and simplified detection of small RNAs.</p
Next Generation Mapping of Enological Traits in an F2 Interspecific Grapevine Hybrid Family
In winegrapes (Vitis spp.), fruit quality traits such as berry color, total soluble solids content (SS), malic acid content (MA), and yeast assimilable nitrogen (YAN) affect fermentation or wine quality, and are important traits in selecting new hybrid winegrape cultivars. Given the high genetic diversity and heterozygosity of Vitis species and their tendency to exhibit inbreeding depression, linkage map construction and quantitative trait locus (QTL) mapping has relied on F1 families with the use of simple sequence repeat (SSR) and other markers. This study presents the construction of a genetic map by single nucleotide polymorphisms identified through genotyping-by-sequencing (GBS) technology in an F2 mapping family of 424 progeny derived from a cross between the wild species V. riparia Michx. and the interspecific hybrid winegrape cultivar, ‘Seyval’. The resulting map has 1449 markers spanning 2424 cM in genetic length across 19 linkage groups, covering 95% of the genome with an average distance between markers of 1.67 cM. Compared to an SSR map previously developed for this F2 family, these results represent an improved map covering a greater portion of the genome with higher marker density. The accuracy of the map was validated using the well-studied trait berry color. QTL affecting YAN, MA and SS related traits were detected. A joint MA and SS QTL spans a region with candidate genes involved in the malate metabolism pathway. We present an analytical pipeline for calling intercross GBS markers and a high-density linkage map for a large F2 family of the highly heterozygous Vitis genus. This study serves as a model for further genetic investigations of the molecular basis of additional unique characters of North American hybrid wine cultivars and to enhance the breeding process by marker-assisted selection. The GBS protocols for identifying intercross markers developed in this study can be adapted for other heterozygous species
Should China subsidise cofiring to meet its 2020 bioenergy target? A spatio-techno-economic analysis
Identification of a Novel Marine Fish Virus, Singapore Grouper Iridovirus-Encoded MicroRNAs Expressed in Grouper Cells by Solexa Sequencing
BACKGROUND: MicroRNAs (miRNAs) are ubiquitous non-coding RNAs that regulate gene expression at the post-transcriptional level. An increasing number of studies has revealed that viruses can also encode miRNAs, which are proposed to be involved in viral replication and persistence, cell-mediated antiviral immune response, angiogenesis, and cell cycle regulation. Singapore grouper iridovirus (SGIV) is a pathogenic iridovirus that has severely affected grouper aquaculture in China and Southeast Asia. Comprehensive knowledge about the related miRNAs during SGIV infection is helpful for understanding the infection and the pathogenic mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether SGIV encoded miRNAs during infection, a small RNA library derived from SGIV-infected grouper (GP) cells was constructed and sequenced by Illumina/Solexa deep-sequencing technology. We recovered 6,802,977 usable reads, of which 34,400 represented small RNA sequences encoded by SGIV. Sixteen novel SGIV-encoded miRNAs were identified by a computational pipeline, including a miRNA that shared a similar sequence to herpesvirus miRNA HSV2-miR-H4-5p, which suggests miRNAs are conserved in far related viruses. Generally, these 16 miRNAs are dispersed throughout the SGIV genome, whereas three are located within the ORF057L region. Some SGIV-encoded miRNAs showed marked sequence and length heterogeneity at their 3' and/or 5' end that could modulate their functions. Expression levels and potential biological activities of these viral miRNAs were examined by stem-loop quantitative RT-PCR and luciferase reporter assay, respectively, and 11 of these viral miRNAs were present and functional in SGIV-infected GP cells. CONCLUSIONS: Our study provided a genome-wide view of miRNA production for iridoviruses and identified 16 novel viral miRNAs. To the best of our knowledge, this is the first experimental demonstration of miRNAs encoded by aquatic animal viruses. The results provide a useful resource for further in-depth studies on SGIV infection and iridovirus pathogenesis
A-Type GABA Receptor as a Central Target of TRPM8 Agonist Menthol
Menthol is a widely-used cooling and flavoring agent derived from mint leaves. In the peripheral nervous system, menthol regulates sensory transduction by activating TRPM8 channels residing specifically in primary sensory neurons. Although behavioral studies have implicated menthol actions in the brain, no direct central target of menthol has been identified. Here we show that menthol reduces the excitation of rat hippocampal neurons in culture and suppresses the epileptic activity induced by pentylenetetrazole injection and electrical kindling in vivo. We found menthol not only enhanced the currents induced by low concentrations of GABA but also directly activated GABAA receptor (GABAAR) in hippocampal neurons in culture. Furthermore, in the CA1 region of rat hippocampal slices, menthol enhanced tonic GABAergic inhibition although phasic GABAergic inhibition was unaffected. Finally, the structure-effect relationship of menthol indicated that hydroxyl plays a critical role in menthol enhancement of tonic GABAAR. Our results thus reveal a novel cellular mechanism that may underlie the ambivalent perception and psychophysical effects of menthol and underscore the importance of tonic inhibition by GABAARs in regulating neuronal activity
Association between Alcohol Consumption and Cancers in the Chinese Population—A Systematic Review and Meta-Analysis
Alcohol consumption is increasing worldwide and is associated with numerous cancers. This systematic review examined the role of alcohol in the incidence of cancer in the Chinese population.Medline/PubMed, EMBASE, CNKI and VIP were searched to identify relevant studies. Cohort and case-control studies on the effect of alcohol use on cancers in Chinese were included. Study quality was evaluated using the Newcastle-Ottawa Scale. Data were independently abstracted by two reviewers. Odds ratios (OR) or relative risks (RR) were pooled using RevMan 5.0. Heterogeneity was evaluated using the Q test and I-squared statistic. P<.01 was considered statistically significant.Pooled results from cohort studies indicated that alcohol consumption was not associated with gastric cancer, esophageal cancers (EC) or lung cancer. Meta-analysis of case-control studies showed that alcohol consumption was a significant risk factor for five cancers; the pooled ORs were 1.79 (99% CI, 1.47–2.17) EC, 1.40 (99% CI, 1.19–1.64) gastric cancer, 1.56 (99% CI, 1.16–2.09) hepatocellular carcinoma, 1.21 (99% CI, 1.00–1.46) nasopharyngeal cancer and 1.71 (99% CI, 1.20–2.44) oral cancer. Pooled ORs of the case-control studies showed that alcohol consumption was protective for female breast cancer and gallbladder cancer: OR 0.76 (99% CI, 0.60–0.97) and 0.70 (99% CI, 0.49–1.00) respectively. There was no significant correlation between alcohol consumption and lung cancer, colorectal cancer, pancreatic cancer, cancer of the ampulla of Vater, prostate cancer or extrahepatic cholangiocarcinoma. Combined results of case-control and cohort studies showed that alcohol consumption was associated with 1.78- and 1.40-fold higher risks of EC and gastric cancer but was not significantly associated with lung cancer.Health programs focused on limiting alcohol intake may be important for cancer control in China. Further studies are needed to examine the interaction between alcohol consumption and other risk factors for cancers in Chinese and other populations
Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper
<p>Abstract</p> <p>Background</p> <p>Bacterial spot of tomato and pepper is caused by four <it>Xanthomonas </it>species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, <it>Xanthomonas euvesicatoria </it>(<it>Xcv</it>) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10.</p> <p>Results</p> <p>We sequenced the genomes of <it>X. vesicatoria </it>(<it>Xv</it>) strain 1111 (ATCC 35937), <it>X. perforans </it>(<it>Xp</it>) strain 91-118 and <it>X. gardneri </it>(<it>Xg</it>) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced <it>Xcv </it>strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from <it>Xg </it>strain 101 and <it>Xv </it>strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in <it>Xcv</it>. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity.</p> <p>Conclusions</p> <p>Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.</p
- …