26 research outputs found

    Geometric frustration in the myosin superlattice of vertebrate muscle

    Get PDF
    Geometric frustration results from an incompatibility between minimum energy arrangements and the geometry of a system, and gives rise to interesting and novel phenomena. Here, we report geometric frustration in a native biological macromolecular system---vertebrate muscle. We analyse the disorder in the myosin filament rotations in the myofibrils of vertebrate striated (skeletal and cardiac) muscle, as seen in thin-section electron micrographs, and show that the distribution of rotations corresponds to an archetypical geometrically frustrated system---the triangular Ising antiferromagnet. Spatial correlations are evident out to at least six lattice spacings. The results demonstrate that geometric frustration can drive the development of structure in complex biological systems, and may have implications for the nature of the actin--myosin interactions involved in muscle contraction. Identification of the distribution of myosin filament rotations with an Ising model allows the extensive results on the latter to be applied to this system. It shows how local interactions (between adjacent myosin filaments) can determine long-range order and, conversely, how observations of long-range order (such as patterns seen in electron micrographs) can be used to estimate the energetics of these local interactions. Furthermore, since diffraction by a disordered system is a function of the second-order statistics, the derived correlations allow more accurate diffraction calculations, which can aid in interpretation of X-ray diffraction data from muscle specimens for structural analysis

    On the generalized Hartley-Hilbert and Fourier-Hilbert transforms

    Get PDF
    In this paper, we discuss Hartley-Hilbert and Fourier-Hilbert transforms on a certain class of generalized functions. The extended transforms considered in this article are shown to be well-defined, one-to-one, linear and continuous mappings with respect to δ and Δ convergence. Certain theorems are also established

    Codes for Noisy Channels with unknown offset

    No full text
    Storage systems, such as Flash memories, suffer, apart from the always presentnoise, also from offset. The presence of this noise can decrease the performanceof a decoder using the Euclidean distance significantly. To negate the effects ofoffset, a new distance, the modied Euclidean distance, was introduced, whichoffers immunity to offset. However, the modified Euclidean distance is lessresistant to noise, which calls for methods to improve its resistance. The cosetof Hamming codes, constant weight codes and Berger codes are discussed and are simulated to investigate their performance with both distances. These codes are compared to each other for the Euclidean distance and the modified Euclideandistance.Applied Mathematic

    Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene

    Get PDF
    Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects
    corecore