108 research outputs found

    Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids

    Get PDF
    The photosynthetic thylakoid has the highest level of lipid unsaturation of any membrane. In Arabidopsis thaliana plants grown at 22°C, approximately 70% of the thylakoid fatty acids are trienoic – they have three double bonds. In Arabidopsis, and other species, the levels of trienoic fatty acids decline substantially at higher temperatures. Several genetic studies indicate that reduced unsaturation improves photosynthetic function and plant survival at high temperatures. Here, these studies are extended using the Arabidopsis triple mutant, fad3-2 fad7-2 fad8 that contains no detectable trienoic fatty acids. In the short-term, fluorescence analyses and electron-transport assays indicated that photosynthetic functions in this mutant are more thermotolerant than the wild type. However, long-term photosynthesis, growth, and survival of plants were all compromised in the triple mutant at high temperature. The fad3-2 fad7-2 fad8 mutant is deficient in jasmonate synthesis and this hormone has been shown to mediate some aspects of thermotolerance; however, additional experiments demonstrated that a lack of jasmonate was not a major factor in the death of triple-mutant plants at high temperature. The results indicate that long-term thermotolerance requires a basal level of trienoic fatty acids. Thus, the success of genetic and molecular approaches to increase thermotolerance by reducing membrane unsaturation will be limited by countervailing effects that compromise essential plant functions at elevated temperatures

    Proanthocyanidin oxidation of Arabidopsis seeds is altered in mutant of the high-affinity nitrate transporter NRT2.7

    Get PDF
    This article appears in:Special Issue: Nutrient Sensing and SignallingNRT2.7 is a seed-specific high-affinity nitrate transporter controlling nitrate content in Arabidopsis mature seeds. The objective of this work was to analyse further the consequences of the nrt2.7 mutation for the seed metabolism. This work describes a new phenotype for the nrt2.7-2 mutant allele in the Wassilewskija accession, which exhibited a distinctive pale-brown seed coat that is usually associated with a defect in flavonoid oxidation. Indeed, this phenotype resembled those of tt10 mutant seeds defective in the laccase-like enzyme TT10/LAC15, which is involved in the oxidative polymerization of flavonoids such as the proantocyanidins (PAs) (i.e. epicatechin monomers and PA oligomers) and flavonol glycosides. nrt2.7-2 and tt10-2 mutant seeds displayed the same higher accumulation of PAs, but were partially distinct, since flavonol glycoside accumulation was not affected in the nrt2.7-2 seeds. Moreover, measurement of in situ laccase activity excluded a possibility of the nrt2.7-2 mutation affecting the TT10 enzymic activity at the early stage of seed development. Functional complementation of the nrt2.7-2 mutant by overexpression of a full-length NRT2.7 cDNA clearly demonstrated the link between the nrt2.7 mutation and the PA phenotype. However, the PA-related phenotype of nrt2.7-2 seeds was not strictly correlated to the nitrate content of seeds. No correlation was observed when nitrate was lowered in seeds due to limited nitrate nutrition of plants or to lower nitrate storage capacity in leaves of clca mutants deficient in the vacuolar anionic channel CLCa. All together, the results highlight a hitherto-unknown function of NRT2.7 in PA accumulation/oxidation.Laure C. David, Julie Dechorgnat, Patrick Berquin, Jean Marc Routaboul, Isabelle Debeaujon, Françoise Daniel-Vedele and Sylvie Ferrario-Mér

    Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits

    Get PDF
    MADS-box transcription factors are key elements of the genetic networks controlling flower and fruit development. Among these, the class D clade gathers AGAMOUS-like genes which are involved in seed, ovule, and funiculus development. The tomato genome comprises two class D genes, Sl-AGL11 and Sl-MBP3 , both displaying high expression levels in seeds and in central tissues of young fruits. The potential effects of Sl-AGL11 on fruit development were addressed through RNAi silencing and ectopic expression strategies. Sl-AGL11-down-regulated tomato lines failed to show obvious phenotypes except a slight reduction in seed size. In contrast, Sl-AGL11 overexpression triggered dramatic modifications of flower and fruit structure that include: the conversion of sepals into fleshy organs undergoing ethylene-dependent ripening, a placenta hypertrophy to the detriment of locular space, starch and sugar accumulation, and an extreme softening that occurs well before the onset of ripening. RNA-Seq transcriptomic profiling high-lighted substantial metabolic reprogramming occurring in sepals and fruits, with major impacts on cell wall-related genes. While several Sl-AGL11-related phenotypes are reminiscent of class C MADS-box genes (TAG1 and TAGL1), the modifications observed on the placenta and cell wall and the Sl-AGL11 expression pattern suggest an action of this class D MADS-box factor on early fleshy fruit development

    An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development

    Get PDF
    FLOWER FLAVONOID TRANSPORTER (FFT) encodes a multidrug and toxin efflux family transporter in Arabidopsis thaliana. FFT (AtDTX35) is highly transcribed in floral tissues, the transcript being localized to epidermal guard cells, including those of the anthers, stigma, siliques and nectaries. Mutant analysis demonstrates that the absence of FFT transcript affects flavonoid levels in the plant and that the altered flavonoid metabolism has wide-ranging consequences. Root growth, seed development and germination, and pollen development, release and viability are all affected. Spectrometry of mutant versus wild-type flowers shows altered levels of a glycosylated flavonol whereas anthocyanin seems unlikely to be the substrate as previously speculated. Thus, as well as adding FFT to the incompletely described flavonoid transport network, it is found that correct reproductive development in Arabidopsis is perturbed when this particular transporter is missing

    Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis

    Get PDF
    TT8/bHLH042 is a key regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis thaliana. TT8 transcriptional activity has been studied extensively, and relies on its ability to form, with several R2R3-MYB and TTG1 (WD-Repeat protein), different MYB-bHLH-WDR (MBW) protein complexes. By contrast, little is known on how TT8 expression is itself regulated.Transcriptional regulation of TT8 expression was studied using molecular, genetic and biochemical approaches. Functional dissection of the TT8 promoter revealed its modular structure. Two modules were found to specifically drive TT8 promoter activity in PA- and anthocyanin-accumulating cells, by differentially integrating the signals issued from different regulators, in a spatio-temporal manner. Interestingly, this regulation involves at least six different MBW complexes, and an unpredicted positive feedback regulatory loop between TT8 and TTG2. Moreover, the results suggest that some putative new regulators remain to be discovered. Finally, specific cis-regulatory elements through which TT8 expression is regulated were identified and characterized. Together, these results provide a molecular model consistent with the specific and highly regulated expression of TT8. They shed new light into the transcriptional regulation of flavonoid biosynthesis and provide new clues and tools for further investigation in Arabidopsis and other plant species

    Arabidopsis Fatty Acid Desaturase FAD2 Is Required for Salt Tolerance during Seed Germination and Early Seedling Growth

    Get PDF
    Fatty acid desaturases play important role in plant responses to abiotic stresses. However, their exact function in plant resistance to salt stress is unknown. In this work, we provide the evidence that FAD2, an endoplasmic reticulum localized ω-6 desaturase, is required for salt tolerance in Arabidopsis. Using vacuolar and plasma membrane vesicles prepared from the leaves of wild-type (Col-0) and the loss-of-function Arabidopsis mutant, fad2, which lacks the functional FAD2, we examined the fatty acid composition and Na+-dependent H+ movements of the isolated vesicles. We observed that, when compared to Col-0, the level of vacuolar and plasma membrane polyunsaturation was lower, and the Na+/H+ exchange activity was reduced in vacuolar and plasma membrane vesicles isolated from fad2 mutant. Consistent with the reduced Na+/H+ exchange activity, fad2 accumulated more Na+ in the cytoplasm of root cells, and was more sensitive to salt stress during seed germination and early seedling growth, as indicated by CoroNa-Green staining, net Na+ efflux and salt tolerance analyses. Our results suggest that FAD2 mediated high-level vacuolar and plasma membrane fatty acid desaturation is essential for the proper function of membrane attached Na+/H+ exchangers, and thereby to maintain a low cytosolic Na+ concentration for salt tolerance during seed germination and early seedling growth in Arabidopsis

    Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Triacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin.</p> <p>Results</p> <p>We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events.</p> <p>Conclusions</p> <p>In this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that DGAT1 and DGAT2 are present in most eukaryotic organisms and belong to two different gene families. The phylogenetic and evolutionary analyses revealed that DGAT1 and DGAT2 evolved separately, with functional convergence, despite their wide molecular and structural divergence.</p
    corecore