6,034 research outputs found

    An X-ray Study of Two B+B Binaries: AH Cep and CW Cep

    Get PDF
    AH Cep and CW Cep are both early B-type binaries with short orbital periods of 1.8~d and 2.7~d, respectively. All four components are B0.5V types. The binaries are also double-lined spectroscopic and eclipsing. Consequently, solutions for orbital and stellar parameters make the pair of binaries ideal targets for a study of the colliding winds between two B~stars. {\em Chandra} ACIS-I observations were obtained to determine X-ray luminosities. AH~Cep was detected with an unabsorbed X-ray luminosity at a 90\% confidence interval of (9−33)×1030(9-33)\times 10^{30} erg s−1^{-1}, or (0.5−1.7)×10−7LBol(0.5-1.7)\times 10^{-7} L_{\rm Bol}, relative to the combined Bolometric luminosities of the two components. While formally consistent with expectations for embedded wind shocks, or binary wind collision, the near-twin system of CW~Cep was a surprising non-detection. For CW~Cep, an upper limit was determined with LX/LBol<10−8L_X/L_{\rm Bol} < 10^{-8}, again for the combined components. One difference between these two systems is that AH~Cep is part of a multiple system. The X-rays from AH~Cep may not arise from standard wind shocks nor wind collision, but perhaps instead from magnetism in any one of the four components of the system. The possibility could be tested by searching for cyclic X-ray variability in AH~Cep on the short orbital period of the inner B~stars.Comment: Astrophysical Journal, accepte

    Magnetic properties of iron pnictides from spin-spiral calculations

    Full text link
    The wave-vector (q) and doping dependences of the magnetic energy, iron moment, and effective exchange interactions in LaFeAsO, BaFe2As2, and SrFe2As2\ are studied by self-consistent LSDA calculations for co-planar spin spirals. For the undoped compounds, the calculated total energy, E(q), reaches its minimum at q corresponding to stripe anti-ferromagnetic order. In LaFeAsO, this minimum becomes flat already at low levels of electron-doping and shifts to an incommensurate q at delta=0.2, where delta is the number of additional electrons (delta>0) or holes (delta<0) per Fe. In BaFe2As2 and SrFe2As2, stripe order remains stable for hole doping down to delta=-0.3. Under electron doping, on the other hand, the E(q) minimum shifts to incommensurate q already at delta=0.1.Comment: 4 pages, 2 figures, International Conference on Magnetism, Karlsruhe, July 26 - 31, 200

    Quantum interference from remotely trapped ions

    Full text link
    We observe quantum interference of photons emitted by two continuously laser-excited single ions, independently trapped in distinct vacuum vessels. High contrast two-photon interference is observed in two experiments with different ion species, calcium and barium. Our experimental findings are quantitatively reproduced by Bloch equation calculations. In particular, we show that the coherence of the individual resonance fluorescence light field is determined from the observed interference

    Non-retracing orbits in Andreev billiards

    Full text link
    The validity of the retracing approximation in the semiclassical quantization of Andreev billiards is investigated. The exact energy spectrum and the eigenstates of normal-conducting, ballistic quantum dots in contact with a superconductor are calculated by solving the Bogoliubov-de Gennes equation and compared with the semiclassical Bohr-Sommerfeld quantization for periodic orbits which result from Andreev reflections. We find deviations that are due to the assumption of exact retracing electron-hole orbits rather than the semiclassical approximation, as a concurrently performed Einstein-Brillouin-Keller quantization demonstrates. We identify three different mechanisms producing non-retracing orbits which are directly identified through differences between electron and hole wave functions.Comment: 9 pages, 12 figures, Phys. Rev. B (in print), high resolution images available upon reques

    Magnetic ordering in GdNi2B2C revisited by resonant x-ray scattering: evidence for the double-q model

    Get PDF
    Recent theoretical efforts aimed at understanding the nature of antiferromagnetic ordering in GdNi2B2C predicted double-q ordering. Here we employ resonant elastic x-ray scattering to test this theory against the formerly proposed, single-q ordering scenario. Our study reveals a satellite reflection associated with a mixed-order component propagation wave vector, viz., (q_a,2q_b,0) with q_b = q_a approx= 0.55 reciprocal lattice units, the presence of which is incompatible with single-q ordering but is expected from the double-q model. A (3q_a,0,0) wave vector (i.e., third-order) satellite is also observed, again in line with the double-q model. The temperature dependencies of these along with that of a first-order satellite are compared with calculations based on the double-q model and reasonable qualitative agreement is found. By examining the azimuthal dependence of first-order satellite scattering, we show the magnetic order to be, as predicted, elliptically polarized at base temperature and find the temperature dependence of the "out of a-b plane" moment component to be in fairly good agreement with calculation. Our results provide qualitative support for the double-q model and thus in turn corroborate the explanation for the "magnetoelastic paradox" offered by this model.Comment: 8 pages, 5 figures. Submitted to Phys. Rev.

    Nano-wires with surface disorder: Giant localization lengths and dynamical tunneling in the presence of directed chaos

    Full text link
    We investigate electron quantum transport through nano-wires with one-sided surface roughness in the presence of a perpendicular magnetic field. Exponentially diverging localization lengths are found in the quantum-to-classical crossover regime, controlled by tunneling between regular and chaotic regions of the underlying mixed classical phase space. We show that each regular mode possesses a well-defined mode-specific localization length. We present analytic estimates of these mode localization lengths which agree well with the numerical data. The coupling between regular and chaotic regions can be determined by varying the length of the wire leading to intricate structures in the transmission probabilities. We explain these structures quantitatively by dynamical tunneling in the presence of directed chaos.Comment: 15 pages, 12 figure

    Magnetic excitations in multiferroic LuMnO3 studied by inelastic neutron scattering

    Full text link
    We present data on the magnetic and magneto-elastic coupling in the hexagonal multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization and thermal expansion measurements. We measured the magnon dispersion along the main symmetry directions and used this data to determine the principal exchange parameters from a spin-wave model. An analysis of the magnetic anisotropy in terms of the crystal field acting on the Mn is presented. We compare the results for LuMnO3 with data on other hexagonal RMnO3 compounds.Comment: 7 pages, 8 figures, typo correcte
    • …
    corecore