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Magnetic ordering in GdNi2B2C revisited by resonant x-ray scattering:
Evidence for the double-q model
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Recent theoretical efforts aimed at understanding the nature of antiferromagnetic ordering in GdNi2B2C
predicted double-q ordering. Here we employ resonant elastic x-ray scattering to test this theory against the
formerly proposed, single-q ordering scenario. Our study reveals a satellite reflection associated with a mixed-
order component propagation wave vector, viz., (qa,2qb,0) with qb = qa ≈ 0.55 reciprocal lattice units, the
presence of which is incompatible with single-q ordering but is expected from the double-q model. A (3qa,0,0)
wave vector (i.e., third-order) satellite is also observed, again in line with the double-q model. The temperature
dependencies of these along with that of a first-order satellite are compared with calculations based on the
double-q model and reasonable qualitative agreement is found. By examining the azimuthal dependence of
first-order satellite scattering, we show the magnetic order to be, as predicted, elliptically polarized at base
temperature and find the temperature dependence of the “out of a-b plane” moment component to be in fairly
good agreement with calculation. Our results provide qualitative support for the double-q model and thus in turn
corroborate the explanation for the “magnetoelastic paradox” offered by this model.
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I. INTRODUCTION

A well-known complexity in the determination of antifer-
romagnetic (AFM) structure arises in systems with a high
symmetry (e.g., cubic or tetragonal) crystal lattice: The issue
of whether the magnetic correlations in each AFM domain are
associated with a single magnetic propagation wave vector axis
or with multiple axes;1 in other words, whether the domains
are single-q or multi-q. An illustrative example is depicted in
Fig. 1. Figure 1(a) shows two-dimensional representations of a
pair of orthogonal single-q domains (blue and red arrows). The
coherent sum of this pair gives Fig. 1(b), a double-q domain.
A fictitious diffraction experiment would observe the same
principal magnetic satellite reflections from the pair of single-q
domains as from the double-q domain. Thus it is nontrivial to
distinguish between these two ordering scenarios, and the same
applies when comparing (in three dimensions) other domain
possibilities. Knowledge of the single- or multi-q nature of
AFM ordering is important in different areas of condensed
matter physics, e.g., in unconventional superconductivity2 and
in the understanding of spin-wave dynamics,3 as well as in the
study of multiferroics.4

Traditionally the question as to the single- versus multi-q
nature of the AFM domains in high symmetry systems has
been addressed by examining, via neutron diffraction, a
single-crystal specimen’s response to an external perturbation
(applied magnetic field or uniaxial stress) that lifts the
magnetic degeneracy of symmetry equivalent crystallographic
directions.1,5,6 More recently, other scattering approaches that
do not involve an applied perturbation were shown capable,

in certain circumstances, of determining the AFM domain
nature.7–10 In the present study we evidence double-q AFM
ordering in a tetragonal crystal system (GdNi2B2C), achieving
this result without perturbing the system and through an
approach different from those in Refs. 7–10.

Our motivation to study GdNi2B2C is threefold: (i) It is jus-
tified by the ongoing interest in the rare-earth quaternary boro-
carbides, which, apart from the well-known superconductivity-
magnetism interplay,11,12 stems from magnetic phenomena
in the family that are interesting in their own right;13,14

(ii) we test a state of the art magnetic structure calculation
for rare-earth based antiferromagnets in which the spin (S)
is the only contribution to the local magnetic moment;15

(iii) [and concomitant with (ii)] we address a paradox16 found
in such (4f ) antiferromagnets. The paradox is as follows.
A 4f spin-only system is understood to lack strong single-
ion anisotropies derived from crystal fields,16,17 and with
complexities arising from such anisotropies removed, coupled
with weak hybridization of the spin polarized electrons with
ligand or conduction electrons, the standard model of rare earth
magnetism18 is expected to provide an accurate description
of experiment. However, in several such (4f ) systems one
would expect lattice distortions below their AFM ordering
temperatures (Néel temperatures, TN ) and such distortions
are not found experimentally in zero applied magnetic field
(H = 0). The term “magnetoelastic (ME) paradox” was
coined to refer to this inconsistency between experiment and
expectation.16

The expectation of a lattice distortion follows from antic-
ipating the effect of exchange striction (a major component
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FIG. 1. (Color online) (a) Single-q and (b) double-q represen-
tations of AFM order associated with a commensurate (principal)
propagation wave vector, of magnitude q = 0.5 reciprocal lattice
units. The arrows represent ordered magnetic moments positioned in
a square array. The lattice parameter is the separation between two
adjacent moments.

in the standard model18 and of importance in fields such
as multiferroics19) in each of the experimentally concluded
AFM structures.16 Several Gd3+ systems (J = S = 7/2, L =
0), including GdNi2B2C, present the ME paradox, i.e., the
experimentally concluded AFM structures are of lower space
group symmetry than the lattices, however, the lattices do not
distort to the lower symmetry.16,20 In order to alleviate the ME
paradox in GdNi2B2C, Jensen and Rotter undertook model
calculations from which they proposed15 a double-q magnetic
structure with tetragonal symmetry (similar to the lattice) and
thus different from the structure concluded from previous
scattering studies21 on GdNi2B2C. Such double-q ordering
can be reconciled with the results from the previous scattering
studies as being essentially a coherent superposition of the
two previously concluded single-q domains.16,21 In the present
study we employ resonant elastic x-ray scattering (REXS)
to reexamine the magnetic structure of GdNi2B2C, paying
particular attention to the possibility of double-q ordering as
predicted by Jensen and Rotter.15

Background information and present aims: GdNi2B2C
crystallizes in the tetragonal space group I4/mmm (#139),
with lattice parameters a = b = 3.57 Å and c = 10.37 Å.
Magnetization studies22 detect two magnetic phase transitions
upon cooling: long-range AFM order develops at TN ≈ 20 K,
and a second, AFM-AFM transition occurs at TR ≈ 14 K.
Employing nonresonant and REXS, Detlefs et al.21 found the
principal magnetic propagation wave vector to be (qa,0,0), or
(0,qb,0), with qa = qb ≈ ±0.55 reciprocal lattice units (rlu).
The magnetic “moment” direction was reported by these same
authors21 to be in the a-b plane and perpendicular to the
propagation wave vector (i.e., transversely polarized AFM
ordering) down to TR . Below TR an out of plane (c-axis)
component associated with the same propagation wave vector,
(qa,0,0) or (0,qb,0), was found to develop, however, the
authors21 did not determine the phase relationship between
the in and out of a-b plane components, nor their relative
sizes, hence the precise polarization of the low-T AFM order
(whether it is, e.g., transverse or elliptical) was not reported.

A neutron powder diffraction by Rotter et al.16 confirmed
the same principal magnetic propagation wave vector, i.e.,
(qa,0,0) or (0,qb,0), but provided no additional information
on the magnetic ordering in GdNi2B2C.

The designation by Detlefs et al.21 of moment direction
rather than of (magnetic) “Fourier component” direction
lay in those authors’ assumption of a single-q scenario,
in which the ordering wave vector breaks the equivalence
of the a and b axes. The symmetry of such an assumed
magnetic structure is thus orthorhombic, however, no signs
of any lattice distortion (i.e., any deviation from tetragonal
symmetry) were subsequently observed in GdNi2B2C (ME
paradox).16 A double-q scenario is predicted by Jensen and
Rotter through Landau mean-field theory as well as by
numerical mean-field calculations15 (see Appendix A). Jensen
and Rotter explain how the double-q scenario leads to a
smaller site variation in |〈Ji〉| (∝ “ordered moment”) than
single-q ordering, implying that GdNi2B2C should stabilize
into a double-q structure on similar grounds to those explaining
double-q order in the cubic compound CeAl2. The numerical
calculations reproduce the main features of the magnetic phase
diagram of GdNi2B2C previously determined by single-crystal
magnetization studies,23 a comparison that adds support to
the prediction. Furthermore, the double-q model carries no
expectation of a lattice distortion (at H = 0). Hence it offers
an explanation for the ME paradox.15

The essential difference between the single- and double-
q scenarios is illustrated in Fig. 1 (arrows now represent
spins of Gd ions) albeit that in this figure the (principal)
wave vector is commensurate q = 0.5 rlu (as opposed to
q ≈ 0.55 rlu) and there is no out of plane component in
these schematics. With regard to evidencing the model in a
scattering experiment involving no external perturbation, an
important point is that the Fourier transform of the numerically
calculated double-q structure contains “mixed-order” Fourier
components associated with wave vectors (nqa,mqb,0), with
n and m being integers of value 1 or 2, with n �= m. The
amplitudes of such components are readily available from
the model (see Appendix A). An aim of the present study
is to detect such mixed-order Fourier components via REXS
and to thus provide experimental evidence for the double-q
model. In the single-q structure, the (qa,0,0) and (0,qb,0)
modulations exist in separate domains such that the magnetic
structure cannot contain mixed-order Fourier components.
A further aim in the present study is to establish the type
of polarization associated with the magnetic ordering. The
model calculations15 find the AFM ordering below TR to be
elliptically polarized (see Appendix A).

II. EXPERIMENTAL DETAILS

REXS occurs when the incident x-ray photon energy is
tuned close to the binding energy of a core level electron,
i.e., to an absorption edge.24,25 In the hard x-ray range, large
resonances are observed from Gd-based magnetic materials
at the (Gd) L2 and L3 edges, i.e., at the binding energies of
Gd 2p1/2 and 2p3/2 electrons, respectively, where the leading
order transitions are electric dipole (E1) in nature, viz., the
virtual photoelectron probes the unoccupied Gd 5d states.26

The magnetic origin of such resonant scattering arises when
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these 5d states carry spin and/or orbital polarization due to
intra-ion exchange interaction between the 4f orbitals and 5d

band. The resonant part of the Detlefs et al. study21 focused
on such E1 REXS and we focus on the same scattering
mechanism in the present study.

The single crystal sample of GdNi2B2C studied here was
(like the crystal studied in the previous synchrotron studies21)
grown at the Ames Laboratory using the high-temperature
flux technique.27 The sample has a platelet form with a
large, flat surface, of area 2 × 2 mm2, perpendicular to the
c axis. All REXS measurements have been performed at
the XMaS (BM28) beamline28 (ESRF), with the incident
x-ray photon energy tuned in the vicinity of the Gd L2

absorption edge. As well as studying in a vertical scattering
plane (incident x-ray polarization perpendicular to plane, i.e.,
σ polarized), measurements have also been conducted in a
horizontal scattering geometry (π polarized incident x rays);
see Figs. 2(a) and 4(a), where the scattering vector Q = k′ − k,
with k and k′ being the incident and exit x-ray wave vectors,
respectively. In the horizontal geometry, the dependence of
scattering intensity upon rotation of the sample about Q—i.e.,
the azimuthal (ψ) dependence—has been investigated. A
Joule-Thomson cryostat has been used for sample cooling.
Polarization analysis of the scattered x rays has been carried
out using a pyrolytic graphite analyzer crystal.
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FIG. 2. (Color online) (a) Schematic of the vertical scattering
geometry used for the comparative study of first- and higher-order
satellites: The b� reciprocal lattice axis lies in the scattering plane
(yellow shaded region) in all measurements and c� is along the sample
surface normal. (b)–(d) Data taken at T = 3 K in σ → π ′: (b) scans
(at fixed Q) as a function of the incident x-ray energy, and (c) and
(d) scans parallel to the [100] and [010] crystal axes, respectively.
The symbols (black circle, magenta square, and green triangle) in
(a) indicate the different satellite reflection positions in Q space and
refer to same (central) legend as the plots. The upper abscissa in (c)
[(d)] gives the h [k] Miller index corresponding to the scan of the
(1̄ + 3qa,0,5) [(qa,0,4)]. Solid lines are peak fits to Gaussian [(c)]
and pseudo-Voigt [(d)] line shapes. An arctan function is included to
fit the steplike background in the scan of the (qa,1̄ + 2qb,5) satellite
in (c).

III. RESULTS AND DISCUSSION

Higher-order satellite reflections are found below TN at
the positions (qa,1̄ + 2qb,5) and (1̄ + 3qa,0,5), respectively,
where qa = qb ≈ 0.55 rlu. In Fig. 2 “energy (E) at-fixed-Q”
and reciprocal space scans of these higher-order reflections,
performed in the σ → π ′ scattering channel at a sample tem-
perature T = 3 K, are compared with similar measurements of
the first-order satellite at (qa,0,4). The same resonant character
observed for the higher-order satellites as for the first-order
satellite [Fig. 2(b)] supports a common magnetic origin of the
signals (the common peak position E0 = 7.9355 keV is the
incident x-ray energy at which the reciprocal space scans have
been performed).

The predicted double-q AFM structure15 is composed of
a spectrum of Fourier components that includes precisely
higher-order components at the wave vectors (qa,2qb,0), with
qb = qa , and (3qa,0,0). As already mentioned, a Fourier com-
ponent (hence the observation of a satellite) at a mixed-order
wave vector such as (qa,2qb,0) is not expected in the single-q
scenario but is critical for the verification of the double-q
prediction. No search for higher-order satellites was reported
by Detlefs et al.,21 while in the powder neutron diffraction
measurements of Rotter et al.16 higher-order satellites would
not have been visible above the background level (owing to
their weakness). Analysis of 155Gd Mössbauer spectra taken
on GdNi2B2C showed improved data fitting by the inclusion of
a third-order Fourier component.29 Since a single-q scenario
was assumed in that analysis (as at that time the theory in
Ref. 15 was not available), the effect of including mixed-order
Fourier components was not investigated.

Figure 3 shows the temperature dependence of the inte-
grated intensity of each signal (from Fig. 2), measured upon
sample heating by [100] scans, as well as by both [100] and
[010] scans in the mixed-order satellite case. For clarity, each
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FIG. 3. (Color online) Temperature dependence of integrated
intensity for the first- and higher-order satellites. The solid lines
are simulations based on calculated Fourier components from the
double-q model (see Appendices A and B). For clarity, data and
simulation have been normalized at T = 3 K to unity [(qa,0,4)], to
0.8 [(1̄ + 3qa,0,5)], and to 0.6 [(qa,1̄ + 2qb,5)]. The vertical dashed
lines indicate the magnetic transition temperatures from previous
studies (see text).
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temperature dependence has been normalized to a different
intensity value at base temperature. The data are compared
with simulations (solid lines) based on the temperature
dependence of the corresponding Fourier components of the
calculated double-q structure (see Appendices A and B).
The (qa,2qb,0) satellite is found to onset at a slightly lower
temperature than calculation predicts, however, in general
reasonable qualitative agreement between our data and the
theoretical simulations is observed, constituting evidence in
support of the double-q ordering scenario. We note that the
steplike form of the background in the [100] scan through
the (qa,1̄ + 2qb,5) position [Fig. 2(c)] is found to persist above
the onset temperature of this reflection.

The values of the transition temperatures TN and TR deter-
mined in the Detlefs et al. study21 are indicated by the vertical
lines in Fig. 3; these values are 19.4 and 13.6 K, respectively,
and magnetization22 and specific-heat30 measurements find
similar values. As pointed out in Jensen and Rotter’s article,15

model calculations find a very similar value of TN , however,
the calculated value of TR is around 1.5 K higher than the
experimental value.

The relative intensities of the different satellites are indi-
cated in Fig. 2(c), where we plot the true count rate after
scaling the first (third) order signal down (up) by a factor of
350 (1.7). In the other plots in this figure, intensities have been
normalized after making a flat background correction to each
higher-order satellite scan. Sample rocking scans (not shown)
made of the (qa,1̄ + 2qb,5) and (1̄ + 3qa,0,5) reflections at
T = 3 K for the sample azimuthal orientation indicated in
Fig. 2(a)—i.e., with the b� reciprocal lattice axis lying in the
vertical scattering plane for each satellite measurement—yield
integrated intensities of 0.21% and 0.12%, respectively, of the
integrated intensity of the sample rocking scan of the (qa,0,4)
satellite measured at the same temperature and azimuthal
orientation. In the given scattering geometry [Fig. 2(a)] one
would expect the (calculated) mixed-order Fourier component
to give rise to scattering at (qa,1̄ + 2qb,5) that is around two
orders of magnitude weaker than that due to the first-order
component measured at (qa,0,4), and the scattering due to
the third-order component at (1̄ + 3qa,0,5) would be weaker
still, by a factor close to 4 (see Appendix B). The mea-
sured relative integrated intensities of the (qa,1̄ + 2qb,5) and
(1̄ + 3qa,0,5) reflections point to weaker relative scattering
strengths compared to theory, by factors of approximately 5
and 3, respectively, which in turn would imply corresponding
Fourier components of factors around 2.2 and 1.7, respectively,
smaller than calculation. Such discrepancy could be due at least
in part to the choice of interaction parameters in Jensen and
Rotter’s model.15 In addition, experimental uncertainty may
partially account for the discrepancy; namely, upon comparing
intensities of different reflections measured with synchrotron
x rays from the single crystal sample, variations in the sample
scattering volume upon changes in the sample orientation
may not be reasonably accounted for by the simple geometric
factors—viz., A = 1/(1 + sin α

sin β
) and B = sin α—described in

Appendix B.
We move now to the determination of the polarization of

the AFM ordering. The model calculations15 find the ordering
to be elliptically polarized below TR , which corresponds to
a phase relationship of e±iπ/2 between projections onto the
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FIG. 4. (Color online) (a) Horizontal scattering geometry used
to study the azimuthal (ψ) dependence of the (qa,0,6) satellite
scattering. (b) Temperature dependence of R [Eq. (1)] measured for
the sample orientation (ψ setting) depicted in (a). The lower (gray)
solid line in (b) gives the mc/mb values obtained from the fit to R(T )
(the upper black solid line), and the stars are the mc/mb values from
model calculations (both curves refer to the right axis). (c) and (d)
ψ dependence of R measured above and below TR , respectively. The
different “fits” in (d) are described in the text.

b [a] and c axes of the first-order Fourier component with
wave vector (qa,0,0) [(0,qb,0)]; see Appendix A. We show
in Fig. 4 the results from our study, in horizontal scattering,
of the first-order satellite positioned at (qa,0,6). Measuring
sample rocking curves of the satellite (at resonance) in both
the π → σ ′ and π → π ′ scattering channels, the asymmetry
ratio

R = I (πσ ′) − I (ππ ′)

I (πσ ′) + I (ππ ′) (1)

(where I denotes integrated intensity) has been determined as a
function of temperature at fixed azimuthal angle (ψ = −140◦)
[Fig. 4(b)] and as a function of ψ at fixed temperatures; T =
4 K (<TR) [Fig. 4(d)] and T = 14 K (�TR) [Fig. 4(c)]. The ψ

angle is defined with respect to the b� axis and is zero when
this axis lies in the scattering plane, on the exit beam side. The
ψ angle shown in Fig. 4(a) is negative. A positive change in
ψ rotates the sample clockwise about Q.

From the scattering amplitudes for π → σ ′ and π → π ′
E1 scattering,24,25 we find (by writing the amplitudes in terms
of Fourier components, as described in Appendix B for the
case of σ → π ′ E1 scattering) that the measured asymmetry
ratio should conform to the following function:

Rfit = |mqfirst · k̂|2 − |mqfirst · (k̂′ × k̂)|2
|mqfirst · k̂|2 + |mqfirst · (k̂′ × k̂)|2 , (2)

where the two scalar products are, of course, functions of ψ .
The fitting curves in Fig. 4 are based on this equation. The func-
tion is insensitive to the magnitude of the first-order Fourier
component (mqfirst ) since this magnitude cancels between the
numerator and denominator, hence the fits determine the
unit vector m̂qfirst = [0,m′

qfirst,b
,m′

qfirst,c
], with m′

qfirst,b
= 1/[1 +

(mc/mb)2]1/2 and m′
qfirst,c

= (mc/mb)eiφm′
qfirst,b

. There are two
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adjustable parameters controlling each fitted value of R:
(i) the ratio mc/mb and (ii) the phase angle φ.

The fit in Fig. 4(c) involves no adjustable parameters:
mc/mb (and, hence, m′

qfirst,c
) is fixed to zero. The achievement

of a fit to the data in Fig. 4(d) is sensitive to the value of φ.
The solid, dashed, and dotted line curves correspond to fits
with φ floated, fixed at π/2, and fixed at 0 (or π ), respectively.
The fitted value is φ = 1.42(5) rad, in good agreement with the
theoretical value of π/2 (see Appendix A). We should note that
the analysis of 155Gd Mössbauer spectra taken on GdNi2B2C
(Ref. 29) suggested such elliptical polarization. Here we find
definitive evidence for this type of AFM polarization from our
scattering experiment. The ratio mc/mb was floated in all fits in
Fig. 4(d), producing a value of 0.53(2) in the “φ floated” fit, in
good agreement with the value (0.48) from model calculations
for the same temperature (T = 4 K). The fit to the temper-
ature dependence of R—upper solid line in Fig. 4(b)—is
with mc/mb constrained to follow a “J = 7/2 mean-field”
temperature dependence and φ fixed to 1.42 rad. We use
this functional form to extract a smooth curve describing
the experimental variation in mc/mb with temperature (gray
line plotted below the data and referring to the y axis on
the right), which may be directly compared with the ratio
calculated from the double-q model (stars)—see Appendix A.
The agreement with theory is reasonable (the discrepancy in
the value of TR between calculation and experiment has already
been mentioned above).

IV. CONCLUSIONS

Following the recent prediction of double-q magnetic or-
dering to alleviate the ME paradox,15 we have reexamined the
magnetic structure of GdNi2B2C using REXS. The observation
of a mixed-order magnetic satellite reflection clearly confirms
the hypothesis of a double-q magnetic structure, without the
need to apply an external symmetry-breaking perturbation.
Our study thus constitutes an example of a “theory-guided”
approach to the establishment of double-q AFM order in a
high symmetry crystal material, complementing other scat-
tering approaches that have evidenced multi-q order without
employing symmetry-breaking perturbations.7–10 Our use of a
mixed-order satellite to identify multi-q AFM ordering is not,
however, unprecedented, as Forgan et al. adopted a similar
approach in a study of neodymium.31

The signal strengths and temperature dependencies of the
mixed order as well as of a third-order satellite are in qualitative
agreement with theory.15 However, the precise intensities
of these higher-order satellites with respect to a first-order
reflection suggest attempting future refinement of the values
of the interaction parameters adopted in the model, in order
to investigate whether improved quantitative agreement with
experiment may be achieved.

By examining the sensitivity of first-order satellite scat-
tering to sample rotation about the scattering vector, we
evidence the theoretically expected elliptical polarization of
the magnetic ordering at low temperature, i.e., we find the
phase factor eiφ linking the projections along the b and c axes
of the first-order Fourier component at (qa,0,0) to correspond
to φ ≈ π/2. We find the variation with temperature of the
ratio of these projections, i.e., mc/mb, to be in fairly good

agreement with the corresponding temperature dependence
from numerical calculations based on the double-q model.15

In future scattering studies it would be interesting to
determine the magnetic field dependence of the mixed-order
satellite to contrast with magnetization studies23 on GdNi2B2C
as well as with calculations15 for H �= 0. The calculations15

and present REXS results encourage similar (combined)
studies to help elucidate the ME paradox in other Gd-based
compounds.16
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APPENDIX A: NUMERICAL MEAN FIELD
CALCULATIONS: MAGNETIC FOURIER COMPONENTS

Self-consistent mean-field calculations have been made as
a function of temperature using the MCPHASE program,32 in
accordance with the information given in the Jensen and Rotter
paper.15 The resulting double-q magnetic structure at T = 3 K
(the temperature corresponding to the measurements in Fig. 2)
is illustrated in Fig. 5. The calculated ordered (spin) moment
at each Gd site (rn) has a magnitude that is independent of
position, i.e., |m(rn)| = 7 μB for all Gd ion positions, where
m(rn) denotes the magnetic moment as a function of position.
For clarity, in Fig. 5 we show only projections of spins onto the
ab plane. Where the projection is small, the spin component

FIG. 5. (Color online) Calculated magnetic structure of
GdNi2B2C at T = 3 K. The arrows represent projections onto the
xy (or ab) plane of the spins of an xy plane of Gd ions.
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TABLE I. Projections onto the three principal crystallographic
axes of calculated Fourier components at the given propagation wave
vectors for T = 3 K. We give absolute values (|mq|) only, which are
geometrical averages over the two predicted double-q orientational
domains (see text).

Fourier component projections (μB )

Wave vector a axis b axis c axis

qfirst = (qa,0,0) 0 3.08 1.48
qmixed = (qa,2qb,0) 0.0046 0.340 0.223
qthird = (3qa,0,0) 0 0.177 0.089

along c (not shown) is large, thus providing the constant
|m(rn)|.

Fourier components mq of such calculated structures have
been computed using the MCPHASE program. We adopt the
following definition of mq:

m(rn) =
∑

q

mqe
−iq·rn . (A1)

For T = 3 K, the calculated Fourier component at the wave
vector (qa,0,0) has projections onto the a, b, and c axes of zero,
(−2.70 − 1.77i) μB and (1.15 − 1.75i) μB , respectively. The
phase angle between these b and c projections is π/2, and the
same angle is found for other temperatures below TR . Such
a phase angle implies elliptically polarized AFM ordering at
low temperature.

For T < TR the calculated double-q structure is asymmet-
ric. This is evidenced by, for example, the result that in this
temperature range the Fourier component at the wave vector
(0,qb,0) is of a different magnitude from that at (qa,0,0).
At T = 3 K, the former component has projections onto
the a, b, and c axes of (−0.415 + 2.90i) μB , zero, and
(0.0154 + 0.0022i) μB , respectively, where again the phase
angle between the nonzero projections (this time along a

and c) is π/2. Given the tetragonal lattice, this asymmetry
implies the formation of two types of orientational double-q
(AFM) domains within a single crystal specimen. Namely,
for example, the above values of Fourier components at the
wave vectors (qa,0,0) and (0,qb,0) will be interchanged from
grain to grain, and the same applies to components at other
symmetry equivalent wave vectors.

Since in a diffraction experiment the scattering probe will
illuminate a large number of such domains, the magnetic
scattering signal will effectively average, in a geometrically
fashion, over different domains. In Table I we give geometrical
averages of the calculated Fourier components relevant to the
measurements in Fig. 2.

APPENDIX B: RELATIVE SATELLITE INTENSITIES
ESTIMATED FROM CALCULATED FOURIER

COMPONENTS

The E1 scattering amplitude relevant to the present study
is normally expressed in terms of ẑn, the unit vector point-
ing along the direction of the nth magnetic moment, i.e.,
ẑn = m(rn)/ |m(rn)|. Here we express it in terms of a sum
over magnetic Fourier components (mq), following a similar

approach to that taken to magnetic structure factors in the
analysis of neutron diffraction data from multi-q systems.1

The σ → π ′ E1 resonant scattering amplitude of the (in
our case) Gd ion at the nth crystallographic site, located at
the position rn, is given by f (σπ ′)

n = iF (1)k̂′ · ẑn, where F (1) is
a difference between matrix element-based terms (FLM ) (see
Refs. 24 and 25). From Eq. (A1) we may write

f (σπ ′)
n = iF (1)

∑
q(mq · k̂′)e−iq·rn

|m(rn)| . (B1)

Substituting this into a structure factor, i.e.,
∑

n f (σπ ′)
n eiQ·rn

with the sum running over an entire AFM domain volume, and
considering the case of a site-independent value of |m(rn)| =
M (as is found for the calculated structure mentioned above),
we may write

∑

n

f (σπ ′)
n eiQ·rn = iF (1)

M

∑

q

∑

n

(mq · k̂′)ei(Q−q)·rn . (B2)

Each summation over n vanishes for every wave vector q
except that corresponding to the given Bragg condition Q =
τ ∗ + q∗, where τ denotes a reciprocal lattice vector and the
subscript ∗ indicates a specific vector. Thus

∑

q

∑

n

mq · k̂′ei(Q−q)·rn =
∑

q

mq · k̂′
∑

n

δQ−q,τ ∗ , (B3)

where the Kronecker delta δQ−q,τ ∗ ≡ δq,q∗ , and hence

∑

n

f (σπ ′)
n eiQ·rn ∝ iF (1)mq∗ · k̂′

M
, (B4)

where mq∗ denotes the specific Fourier component being
sampled (“filtered out”) by the REXS process at the given
photon momentum transfer vector Q. Since the terms iF (1)

and M are the same for any given satellite measurement,
be it first or higher order, the intensity (∝|structure factor|2)
simulations in Fig. 3 have been evaluated simply as |mq∗ · k̂′|2,
using geometrically averaged Fourier components calculated
as a function of temperature (see above).

With regard to the integrated intensities of rocking curves
of the different satellites, three experimental factors affecting
the integrated intensity have been taken into account:
(i) the Lorentz factor L = 1/ sin 2θ , where 2θ is the scattering
angle; (ii) the factor A = 1/(1 + sin α

sin β
), related to the x-ray

attenuation by the sample; and (iii) B = sin α, the incident
beam fraction intercepted by the sample. The angles α

and β are defined in Fig. 2(a), and their values during the
first-, mixed- and third-order measurements are [(α,β) ≈]
(18.9◦,18.9◦), (20.2◦,26.5◦), and (23.7◦,23.7◦), respectively.
We have evaluated the ratios (LAB)first/(LAB)mixed and
(LAB)first/(LAB)third—where the subscripts refer to the
different (satellite) diffraction conditions, respectively—and
find them both to be very close to (within 3% of) unity. Thus,
we may compare the relative integrated intensities Imixed/Ifirst

and Ithird/Ifirst directly to modulus squared values of ratios of
calculated structure factors. In calculating these ratios, com-
mon factors—i.e., iF (1) and M in Eq. (B4)—in the numerator
and denominator cancel out. Therefore, the relevant structure

factor ratios reduce to |mqmixed ·k̂′

mqfirst ·k̂′ |2 and |mqthird ·k̂′

mqfirst ·k̂′ |2. These ratios

have been evaluated for T = 3 K using geometrical averages
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of the calculated Fourier components (see Table I) and taking
into account the sample azimuthal orientation indicated in
Fig. 2(a). The resulting ratio values are 0.011 and 0.0032,

respectively, which are factors of approximately 5 and
3 times larger, respectively, than the corresponding
experimental relative intensities (0.0021 and 0.0012).
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