6,575 research outputs found
Influence of branch points in the complex plane on the transmission through double quantum dots
We consider single-channel transmission through a double quantum dot system
consisting of two single dots that are connected by a wire and coupled each to
one lead. The system is described in the framework of the S-matrix theory by
using the effective Hamiltonian of the open quantum system. It consists of the
Hamiltonian of the closed system (without attached leads) and a term that
accounts for the coupling of the states via the continuum of propagating modes
in the leads. This model allows to study the physical meaning of branch points
in the complex plane. They are points of coalesced eigenvalues and separate the
two scenarios with avoided level crossings and without any crossings in the
complex plane. They influence strongly the features of transmission through
double quantum dots.Comment: 30 pages, 14 figure
Quantum interference from remotely trapped ions
We observe quantum interference of photons emitted by two continuously
laser-excited single ions, independently trapped in distinct vacuum vessels.
High contrast two-photon interference is observed in two experiments with
different ion species, calcium and barium. Our experimental findings are
quantitatively reproduced by Bloch equation calculations. In particular, we
show that the coherence of the individual resonance fluorescence light field is
determined from the observed interference
An X-ray Study of Two B+B Binaries: AH Cep and CW Cep
AH Cep and CW Cep are both early B-type binaries with short orbital periods
of 1.8~d and 2.7~d, respectively. All four components are B0.5V types. The
binaries are also double-lined spectroscopic and eclipsing. Consequently,
solutions for orbital and stellar parameters make the pair of binaries ideal
targets for a study of the colliding winds between two B~stars. {\em Chandra}
ACIS-I observations were obtained to determine X-ray luminosities. AH~Cep was
detected with an unabsorbed X-ray luminosity at a 90\% confidence interval of
erg s, or ,
relative to the combined Bolometric luminosities of the two components. While
formally consistent with expectations for embedded wind shocks, or binary wind
collision, the near-twin system of CW~Cep was a surprising non-detection. For
CW~Cep, an upper limit was determined with , again
for the combined components. One difference between these two systems is that
AH~Cep is part of a multiple system. The X-rays from AH~Cep may not arise from
standard wind shocks nor wind collision, but perhaps instead from magnetism in
any one of the four components of the system. The possibility could be tested
by searching for cyclic X-ray variability in AH~Cep on the short orbital period
of the inner B~stars.Comment: Astrophysical Journal, accepte
Whispering gallery modes in open quantum billiards
The poles of the S-matrix and the wave functions of open 2D quantum billiards
with convex boundary of different shape are calculated by the method of complex
scaling. Two leads are attached to the cavities. The conductance of the
cavities is calculated at energies with one, two and three open channels in
each lead. Bands of overlapping resonance states appear which are localized
along the convex boundary of the cavities and contribute coherently to the
conductance. These bands correspond to the whispering gallery modes appearing
in the classical calculations.Comment: 9 pages, 3 figures in jpg and gif forma
Conductance of Open Quantum Billiards and Classical Trajectories
We analyse the transport phenomena of 2D quantum billiards with convex
boundary of different shape. The quantum mechanical analysis is performed by
means of the poles of the S-matrix while the classical analysis is based on the
motion of a free particle inside the cavity along trajectories with a different
number of bounces at the boundary. The value of the conductance depends on the
manner the leads are attached to the cavity. The Fourier transform of the
transmission amplitudes is compared with the length of the classical paths.
There is good agreement between classical and quantum mechanical results when
the conductance is achieved mainly by special short-lived states such as
whispering gallery modes (WGM) and bouncing ball modes (BBM). In these cases,
also the localization of the wave functions agrees with the picture of the
classical paths. The S-matrix is calculated classically and compared with the
transmission coefficients of the quantum mechanical calculations for five modes
in each lead. The number of modes coupled to the special states is effectively
reduced.Comment: 19 pages, 6 figures (jpg), 2 table
Ab initio lattice dynamics simulations and inelastic neutron scattering spectra for studying phonons in BaFe2As2: Effect of structural phase transition, structural relaxation and magnetic ordering
We have performed extensive ab initio calculations to investigate phonon
dynamics and their possible role in superconductivity in BaFe2As2 and related
systems. The calculations are compared to inelastic neutron scattering data
that offer improved resolution over published data [Mittal et al., PRB 78
104514 (2008)], in particular at low frequencies. Effects of structural phase
transition and full/partial structural relaxation, with and without magnetic
ordering, on the calculated vibrational density of states are reported. Phonons
are best reproduced using either the relaxed magnetic structures or the
experimental cell. Several phonon branches are affected by the subtle
structural changes associated with the transition from the tetragonal to the
orthorhombic phase. Effects of phonon induced distortions on the electronic and
spin structure have been investigated. It is found that for some vibrational
modes, there is a significant change of the electronic distribution and spin
populations around the Fermi level. A peak at 20 meV in the experimental data
falls into the pseudo-gap region of the calculation. This was also the case
reported in our recent work combined with an empirical parametric calculation
[Mittal et al., PRB 78 104514 (2008)]. The combined evidence for the coupling
of electronic and spin degrees of freedom with phonons is relevant to the
current interest in superconductivity in BaFe2As2 and related systems
Dynamics of open quantum systems
The coupling between the states of a system and the continuum into which it
is embedded, induces correlations that are especially large in the short time
scale. These correlations cannot be calculated by using a statistical or
perturbational approach. They are, however, involved in an approach describing
structure and reaction aspects in a unified manner. Such a model is the SMEC
(shell model embedded in the continuum). Some characteristic results obtained
from SMEC as well as some aspects of the correlations induced by the coupling
to the continuum are discussed.Comment: 16 pages, 5 figure
- …