165 research outputs found

    Superconductivity near the vibrational mode instability in MgCNi3

    Full text link
    To understand the role of electron-phonon interaction in superconducting MgCNi3_{3} we have performed density functional based linear response calculations of its lattice dynamical properties. A large coupling constant λ% \lambda = 1.51 is predicted and contributing phonons are identified as displacements of Ni atoms towards octahedral interstitials of the perovskite lattice. Instabilities found for some vibrational modes emphasize the role of anharmonic effects in resolving experimental controversies.Comment: 4 pages, 4 eps figures, replaces the older versio

    Photoemission and x-ray absorption study of MgC_(1-x)Ni_3

    Full text link
    We investigated electronic structure of MgC_(1-x)Ni_3 with photoemission and x-ray absorption spectroscopy. Both results show that overall band structure is in reasonable agreement with band structure calculations including the existence of von Hove singularity (vHs)near E_F. However, we find that the sharp vHs peak theoretically predicted near the E_F is substantially suppressed. As for the Ni core level and absorption spectrum, there exist the satellites of Ni 2p which have a little larger energy separation and reduced intensity compared to the case of Ni-metal. These facts indicate that correlation effects among Ni 3d electrons may be important to understand various physical properties.Comment: 12 pages, 4 figure

    Two-proton overlap functions in the Jastrow correlation method and cross section of the 16^{16}O(e,epp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction

    Full text link
    Using the relationship between the two-particle overlap functions (TOF's) and the two-body density matrix (TDM), the TOF's for the 16^{16}O(e,epp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction are calculated on the basis of a TDM obtained within the Jastrow correlation method. The main contributions of the removal of 1S0^1S_0 and 3P1^3P_1 pppp pairs from 16^{16}O are considered in the calculation of the cross section of the 16^{16}O(e,epp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction using the Jastrow TOF's which include short-range correlations (SRC). The results are compared with the cross sections calculated with different theoretical treatments of the TOF's.Comment: 10 pages, 8 figures, ReVTeX

    Deterministically Driven Avalanche Models of Solar Flares

    Full text link
    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in Solar Physic

    Self energies of the pion and the delta isobar from the ^3He(e,e'pi^+)^3H reaction

    Full text link
    In a kinematically complete experiment at the Mainz microtron MAMI, pion angular distributions of the 3^3He(e,e'π+)3\pi^+)^3H reaction have been measured in the excitation region of the Δ\Delta resonance to determine the longitudinal (LL), transverse (TT), and the LTLT interference part of the differential cross section. The data are described only after introducing self-energy modifications of the pion and Δ\Delta-isobar propagators. Using Chiral Perturbation Theory (ChPT) to extrapolate the pion self energy as inferred from the measurement on the mass shell, we deduce a reduction of the π+\pi^+ mass of Δmπ+=(1.72.1+1.7)\Delta m_{\pi^+} = (-1.7^{+ 1.7}_{- 2.1}) MeV/c2^2 in the neutron-rich nuclear medium at a density of ρ=(0.0570.057+0.085)\rho = (0.057^{+ 0.085}_{- 0.057}) fm3^{-3}. Our data are consistent with the Δ\Delta self energy determined from measurements of π0\pi^0 photoproduction from 4^4He and heavier nuclei.Comment: Elsart, 12 pages and 4 figures, Correspondent: Professor Dr. Dr. h.c. mult. Achim Richter, [email protected], submitted to Phys. Rev. Let

    A Comparison of Solar Cycle Variations in the Equatorial Rotation Rates of the Sun's Subsurface, Surface, Corona, and Sunspot Groups

    Full text link
    Using the Solar Optical Observing Network (SOON) sunspot-group data for the period 1985-2010, the variations in the annual mean equatorial-rotation rates of the sunspot groups are determined and compared with the known variations in the solar equatorial-rotation rates determined from the following data: i) the plasma rotation rates at 0.94Rsun, 0.95Rsun,...,1.0Rsun measured by Global Oscillation Network Group (GONG) during the period 1995-2010, ii) the data on the soft X-ray corona determined from Yohkoh/SXT full disk images for the years 1992-2001, iii) the data on small bright coronal structures (SBCS) which were traced in Solar and Heliospheric Observatory (SOHO)/EIT images during the period 1998-2006, and iv) the Mount Wilson Doppler-velocity measurements during the period 1986-2007. A large portion (up to approximate 30 deg latitude) of the mean differential-rotation profile of the sunspot groups lies between those of the internal differential-rotation rates at 0.94Rsun and 0.98Rsun.The variation in the yearly mean equatorial-rotation rate of the sunspot groups seems to be lagging that of the equatorial-rotation rate determined from the GONG measurements by one to two years.The amplitude of the latter is very small.The solar-cycle variation in the equatorial-rotation rate of the solar corona closely matches that determined from the sunspot-group data.The variation in the equatorial-rotation rate determined from the Mount Wilson Doppler-velocity data closely resembles the corresponding variation in the equatorial-rotation rate determined from the sunspot-group data that included the values of the abnormal angular motions (> 3 deg per day) of the sunspot groups. Implications of these results are pointed out.Comment: 22 pages, 10 figures, accepted by Solar Physic

    Properties of heavy quarkonia and B_c mesons in the relativistic quark model

    Get PDF
    The mass spectra and electromagnetic decay rates of charmonium, bottomonium and B_c mesons are comprehensively investigated in the relativistic quark model. The presence of only heavy quarks allows the expansion in powers of their velocities. All relativistic corrections of order v^2/c^2, including retardation effects and one-loop radiative corrections, are systematically taken into account in the computations of the mass spectra. The obtained wave functions are used for the calculation of radiative magnetic dipole (M1) and electric dipole (E1) transitions. It is found that relativistic effects play a substantial role. Their account and the proper choice of the Lorentz structure of the quark-antiquark interaction in a meson is crucial for bringing theoretical predictions in accord with experimental data. A detailed comparison of the calculated decay rates and branching fractions with available experimental data for radiative decays of charmonium and bottomonium is presented. The possibilities to observe the currently missing spin-singlet S and P states as well as D states in bottomonium are discussed. The results for B_c masses and decays are compared with other quark model predictions.Comment: 31 pages, 2 figures, minor correction

    Evidence for a narrow dip structure at 1.9 GeV/c2^2 in 3π+3π3\pi^+ 3\pi^- diffractive photoproduction

    Full text link
    A narrow dip structure has been observed at 1.9 GeV/c2^2 in a study of diffractive photoproduction of the  3π+3π~3\pi^+3\pi^- final state performed by the Fermilab experiment E687.Comment: The data of Figure 6 can be obtained by downloading the raw data file e687_6pi.txt. v5 (2nov2018): added Fig. 7, the 6 pion energy distribution as requested by a reade

    Measurement of the nuclear multiplicity ratio for Ks0K^0_s hadronization at CLAS

    Full text link
    The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the Ks0K_s^0 multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy zz transferred to the Ks0K_s^0 and the transverse momentum squared pT2p_{T}^2 of the Ks0K_s^0. We find that the multiplicity ratios for Ks0K^0_s are reduced in the nuclear medium at high zz and low pT2p_{T}^2, with a trend for the Ks0K^0_s transverse momentum to be broadened in the nucleus for large pT2p_{T}^2.Comment: Submitted to Phys. Lett.

    Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

    Full text link
    We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure
    corecore