17,248 research outputs found
Space - Single Precision Cowell Trajectory Program
Single Precision Cowell Trajectory program - digital computer program for trajectory computatio
SFPRO - Single Precision Cowell Trajectory Processor
Digital computer program for IBM 7094 computer to generate spacecraft tracking station calculation
Noise-free high-efficiency photon-number-resolving detectors
High-efficiency optical detectors that can determine the number of photons in
a pulse of monochromatic light have applications in a variety of physics
studies, including post-selection-based entanglement protocols for linear
optics quantum computing and experiments that simultaneously close the
detection and communication loopholes of Bell's inequalities. Here we report on
our demonstration of fiber-coupled, noise-free, photon-number-resolving
transition-edge sensors with 88% efficiency at 1550 nm. The efficiency of these
sensors could be made even higher at any wavelength in the visible and
near-infrared spectrum without resulting in a higher dark-count rate or
degraded photon-number resolution.Comment: 4 pages, 4 figures Published in Physical Review A, Rapid
Communications, 17 June 200
Human endogenous retrovirus K106 (HERV-K106) was infectious after the emergence of anatomically modern humans.
HERV-K113 and HERV-K115 have been considered to be among the youngest HERVs because they are the only known full-length proviruses that are insertionally polymorphic and maintain the open reading frames of their coding genes. However, recent data suggest that HERV-K113 is at least 800,000 years old, and HERV-K115 even older. A systematic study of HERV-K HML2 members to identify HERVs that may have infected the human genome in the more recent evolutionary past is lacking. Therefore, we sought to determine how recently HERVs were exogenous and infectious by examining sequence variation in the long terminal repeat (LTR) regions of all full-length HERV-K loci. We used the traditional method of inter-LTR comparison to analyze all full length HERV-Ks and determined that two insertions, HERV-K106 and HERV-K116 have no differences between their 5' and 3' LTR sequences, suggesting that these insertions were endogenized in the recent evolutionary past. Among these insertions with no sequence differences between their LTR regions, HERV-K106 had the most intact viral sequence structure. Coalescent analysis of HERV-K106 3' LTR sequences representing 51 ethnically diverse individuals suggests that HERV-K106 integrated into the human germ line approximately 150,000 years ago, after the emergence of anatomically modern humans
Finitely Many Dirac-Delta Interactions on Riemannian Manifolds
This work is intended as an attempt to study the non-perturbative
renormalization of bound state problem of finitely many Dirac-delta
interactions on Riemannian manifolds, S^2, H^2 and H^3. We formulate the
problem in terms of a finite dimensional matrix, called the characteristic
matrix. The bound state energies can be found from the characteristic equation.
The characteristic matrix can be found after a regularization and
renormalization by using a sharp cut-off in the eigenvalue spectrum of the
Laplacian, as it is done in the flat space, or using the heat kernel method.
These two approaches are equivalent in the case of compact manifolds. The heat
kernel method has a general advantage to find lower bounds on the spectrum even
for compact manifolds as shown in the case of S^2. The heat kernels for H^2 and
H^3 are known explicitly, thus we can calculate the characteristic matrix.
Using the result, we give lower bound estimates of the discrete spectrum.Comment: To be published in JM
Levinson's theorem for the Schr\"{o}dinger equation in two dimensions
Levinson's theorem for the Schr\"{o}dinger equation with a cylindrically
symmetric potential in two dimensions is re-established by the Sturm-Liouville
theorem. The critical case, where the Schr\"{o}dinger equation has a finite
zero-energy solution, is analyzed in detail. It is shown that, in comparison
with Levinson's theorem in non-critical case, the half bound state for
wave, in which the wave function for the zero-energy solution does not decay
fast enough at infinity to be square integrable, will cause the phase shift of
wave at zero energy to increase an additional .Comment: Latex 11 pages, no figure and accepted by P.R.A (in August); Email:
[email protected], [email protected]
Hopelessly Mortal: The Role of Mortality Salience, Immortality and Trait Self-esteem in Personal Hope
Do people lose hope when thinking about death? Based on Terror Management Theory, we predicted that thoughts of death (i.e., mortality salience) would reduce personal hope for people low, but not high, in self-esteem, and that this reduction in hope would be ameliorated by promises of immortality. In Studies 1 and 2, mortality salience reduced personal hope for people low in self-esteem, but not for people high in self-esteem. In Study 3, mortality salience reduced hope for people low in self-esteem when they read an argument that there is no afterlife, but not when they read âevidenceâ supporting life after death. In Study 4, this effect was replicated with an essay affirming scientific medical advances that promise immortality. Together, these findings uniquely demonstrate that thoughts of mortality interact with trait self-esteem to cause changes in personal hope, and that literal immortality beliefs can aid psychological adjustment when thinking about death. Implications for understanding personal hope, trait self-esteem, afterlife beliefs and terror management are discussed
High-resolution computed tomography reconstructions of invertebrate burrow systems
The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (ÎŒ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (â€2,000 raw image slices aquariumâ1, isotropic voxel resolution, 81âÎŒm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture
Practical long-distance quantum key distribution system using decoy levels
Quantum key distribution (QKD) has the potential for widespread real-world
applications. To date no secure long-distance experiment has demonstrated the
truly practical operation needed to move QKD from the laboratory to the real
world due largely to limitations in synchronization and poor detector
performance. Here we report results obtained using a fully automated, robust
QKD system based on the Bennett Brassard 1984 protocol (BB84) with low-noise
superconducting nanowire single-photon detectors (SNSPDs) and decoy levels.
Secret key is produced with unconditional security over a record 144.3 km of
optical fibre, an increase of more than a factor of five compared to the
previous record for unconditionally secure key generation in a practical QKD
system.Comment: 9 page
- âŠ