35,231 research outputs found
On-site manufacture of propellant oxygen from lunar resources
The Aerojet Carbothermal Process for the manufacture of oxygen from lunar resources has three essential steps: the reduction of silicate with methane to form carbon monoxide and hydrogen; the reduction of carbon monoxide with hydrogen to form methane and water; and the electrolysis of water to form oxygen and hydrogen. This cyclic process does not depend upon the presence of water or water precursors in the lunar materials; it will produce oxygen from silicates regardless of their precise composition and fine structure. Research on the first step of the process was initiated by determining some of the operating conditions required to reduce igneous rock with carbon and silicon carbide. The initial phase of research on the second step is completed; quantitative conversion of carbon monoxide and hydrogen to methane and water was achieved with a nickel-on-kieselguhr catalyst. The equipment used in and the results obtained from these process studies are reported in detail
Transport: Introduction
Space transportation requirements for the NASA baseline scenario for future space missions are discussed. Spacecraft/propulsion technologies required for surface-to-orbit, orbit-to-orbit, and surface (lunar) transportation are addressed
Combatting Skepticism Towards HR
[Excerpt] When assessing the essentiality of HR within a firm, one must first ask what is meant by the word “essential” within a business context. The trickiness here, however, is that such a definition is highly contingent on the type and size of a particular firm. If one defines “essential” as “indispensable,” then HR is almost certainly not essential in very small firms. In such instances, the work of HR can be done by other managers and the owners themselves. On the other hand, if one defines “essential” as “adding considerable value,” then innovative human resource policies can create a competitive advantage even in the smallest of firms. Instead of relying on a single definition of essentiality, this essay will focus on the reasons why human resources practices are often called into question in the first place. Furthermore, I will propose recommendations on how to combat skepticism toward HR
Carbon deposition model for oxygen-hydrocarbon combustion. Task 6: Data analysis and formulation of an empirical model
The formation and deposition of carbon (soot) was studied in the Carbon Deposition Model for Oxygen-Hydrocarbon Combustion Program. An empirical, 1-D model for predicting soot formation and deposition in LO2/hydrocarbon gas generators/preburners was derived. The experimental data required to anchor the model were identified and a test program to obtain the data was defined. In support of the model development, cold flow mixing experiments using a high injection density injector were performed. The purpose of this investigation was to advance the state-of-the-art in LO2/hydrocarbon gas generator design by developing a reliable engineering model of gas generator operation. The model was formulated to account for the influences of fluid dynamics, chemical kinetics, and gas generator hardware design on soot formation and deposition
On the emergence of helicity in rotating stratified turbulence
We perform numerical simulations of decaying rotating stratified turbulence
and show, in the Boussinesq framework, that helicity (velocity-vorticity
correlation), as observed in super-cell storms and hurricanes, is spontaneously
created due to an interplay between buoyancy and rotation common to large-scale
atmospheric and oceanic flows. Helicity emerges from the joint action of eddies
and of inertia-gravity waves (with inertia and gravity with respective
associated frequencies and ), and it occurs when the waves are
sufficiently strong. For the amount of helicity produced is correctly
predicted by a quasi-linear balance equation. Outside this regime, and up to
the highest Reynolds number obtained in this study, namely ,
helicity production is found to be persistent for as large as , and for and respectively as large as and
.Comment: 10 pages, 5 figure
A paradigmatic flow for small-scale magnetohydrodynamics: properties of the ideal case and the collision of current sheets
We propose two sets of initial conditions for magnetohydrodynamics (MHD) in
which both the velocity and the magnetic fields have spatial symmetries that
are preserved by the dynamical equations as the system evolves. When
implemented numerically they allow for substantial savings in CPU time and
memory storage requirements for a given resolved scale separation. Basic
properties of these Taylor-Green flows generalized to MHD are given, and the
ideal non-dissipative case is studied up to the equivalent of 2048^3 grid
points for one of these flows. The temporal evolution of the logarithmic
decrements, delta, of the energy spectrum remains exponential at the highest
spatial resolution considered, for which an acceleration is observed briefly
before the grid resolution is reached. Up to the end of the exponential decay
of delta, the behavior is consistent with a regular flow with no appearance of
a singularity. The subsequent short acceleration in the formation of small
magnetic scales can be associated with a near collision of two current sheets
driven together by magnetic pressure. It leads to strong gradients with a fast
rotation of the direction of the magnetic field, a feature also observed in the
solar wind.Comment: 8 pages, 4 figure
Conformal invariance in three-dimensional rotating turbulence
We examine three--dimensional turbulent flows in the presence of solid-body
rotation and helical forcing in the framework of stochastic Schramm-L\"owner
evolution curves (SLE). The data stems from a run on a grid of points,
with Reynolds and Rossby numbers of respectively 5100 and 0.06. We average the
parallel component of the vorticity in the direction parallel to that of
rotation, and examine the resulting field for
scaling properties of its zero-value contours. We find for the first time for
three-dimensional fluid turbulence evidence of nodal curves being conformal
invariant, belonging to a SLE class with associated Brownian diffusivity
. SLE behavior is related to the self-similarity of the
direct cascade of energy to small scales in this flow, and to the partial
bi-dimensionalization of the flow because of rotation. We recover the value of
with a heuristic argument and show that this value is consistent with
several non-trivial SLE predictions.Comment: 4 pages, 3 figures, submitted to PR
- …
