1,475 research outputs found
Regeneracion de plantas en tomate de árbol (Cyphomandra Betacea Cav. Sendt.) Mediante organogénesis inducida a partir de callos
El objetivo de este trabajo fue obtener plantas de tomate de árbol (C. betacea) bajo condiciones
in-vitro, mediante la organogénesis inducida en callos. Se Evaluaron los medios MS (testigo),
MS+2,4-D5μM, MS+2,4-D10μM y MS+2,4-D15μM, para los tratamientos dos tres y cuatro se
agrego 13 μM de cinetina. Se utilizo un diseño de Bloques Completos al Azar con cuatro
repeticiones, para un total de 16 unidades experimentales. Cada unidad experimental está
compuesta por diez frascos con capacidad de 120 ml cada uno. En cada frasco se agregaron 20 ml
de medio de cultivo, sembrándose tres callos de aproximadamente 5 mm de diámetro, teniendo
120 callos por unidad experimental. El mayor porcentaje de plantas regeneradas (14,66 %) se
obtuvo con MS+2,4-D5μM y el menor porcentaje de plantas regeneradas (2,91%) se obtuvo con
MS+2,4-D15μM. La mayor cantidad de raíces, tallos, hojas y plantas formadas fue con MS+2,4-
D5μM, con valores 0,52, 0,14, 0,15 y 0,05 respectivamente y el menor valor se obtuvo con
MS+2,4-D15μM con valores 0,09, 0,04, 0,008 y 0 respetivamente
Feasibility of diffusion and probabilistic white matter analysis in patients implanted with a deep brain stimulator.
Deep brain stimulation (DBS) for Parkinson\u27s disease (PD) is an established advanced therapy that produces therapeutic effects through high frequency stimulation. Although this therapeutic option leads to improved clinical outcomes, the mechanisms of the underlying efficacy of this treatment are not well understood. Therefore, investigation of DBS and its postoperative effects on brain architecture is of great interest. Diffusion weighted imaging (DWI) is an advanced imaging technique, which has the ability to estimate the structure of white matter fibers; however, clinical application of DWI after DBS implantation is challenging due to the strong susceptibility artifacts caused by implanted devices. This study aims to evaluate the feasibility of generating meaningful white matter reconstructions after DBS implantation; and to subsequently quantify the degree to which these tracts are affected by post-operative device-related artifacts. DWI was safely performed before and after implanting electrodes for DBS in 9 PD patients. Differences within each subject between pre- and post-implantation FA, MD, and RD values for 123 regions of interest (ROIs) were calculated. While differences were noted globally, they were larger in regions directly affected by the artifact. White matter tracts were generated from each ROI with probabilistic tractography, revealing significant differences in the reconstruction of several white matter structures after DBS. Tracts pertinent to PD, such as regions of the substantia nigra and nigrostriatal tracts, were largely unaffected. The aim of this study was to demonstrate the feasibility and clinical applicability of acquiring and processing DWI post-operatively in PD patients after DBS implantation. The presence of global differences provides an impetus for acquiring DWI shortly after implantation to establish a new baseline against which longitudinal changes in brain connectivity in DBS patients can be compared. Understanding that post-operative fiber tracking in patients is feasible on a clinically-relevant scale has significant implications for increasing our current understanding of the pathophysiology of movement disorders, and may provide insights into better defining the pathophysiology and therapeutic effects of DBS
Opioid initiation and injection transition in rural northern New England: A mixed-methods approach
BACKGROUND: In rural northern New England, located in the northeastern United States, the overdose epidemic has accelerated with the introduction of fentanyl. Opioid initiation and transition to opioid injection have been studied in urban settings. Little is known about opioid initiation and transition to injection drug use in rural northern New England.
METHODS: This mixed-methods study characterized opioid use and drug injection in 11 rural counties in Massachusetts, Vermont, and New Hampshire between 2018 and 2019. People who use drugs completed audio computer-assisted self-interview surveys on substance use and risk behaviors (n = 589) and shared personal narratives through in-depth interviews (n = 22). The objective of the current study is to describe initiation of opioid use and drug injection in rural northern New England.
RESULTS: Median age of first injection was 22 years (interquartile range 18-28 years). Key themes from in-depth interviews that led to initiating drug injection included normalization of drug use in families and communities, experiencing trauma, and abrupt discontinuation of an opioid prescription. Other factors that led to a transition to injecting included lower cost, increased effect/ rush, greater availability of heroin/ fentanyl, and faster relief of withdrawal symptoms with injection.
CONCLUSIONS: Trauma, normalization of drug use, over-prescribing of opioids, and abrupt discontinuation challenge people who use drugs in rural northern New England communities. Inadequate opioid tapering may increase transition to non-prescribed drug use. The extent and severity of traumatic experiences described highlights the importance of enhancing trauma-informed care in rural areas
Low-dimensional dynamics for working memory and time encoding
Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear “ramping” component of each neuron’s firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data
Aspects of ABJM orbifolds with discrete torsion
We analyze orbifolds with discrete torsion of the ABJM theory by a finite
subgroup of . Discrete torsion is implemented by
twisting the crossed product algebra resulting after orbifolding. It is shown
that, in general, the order of the cocycle we chose to twist the algebra by
enters in a non trivial way in the moduli space. To be precise, the M-theory
fiber is multiplied by a factor of in addition to the other effects that
were found before in the literature. Therefore we got a
action on the fiber. We present a general
analysis on how this quotient arises along with a detailed analysis of the
cases where is abelian
Dynamical description of the buildup process in resonant tunneling: Evidence of exponential and non-exponential contributions
The buildup process of the probability density inside the quantum well of a
double-barrier resonant structure is studied by considering the analytic
solution of the time dependent Schr\"{o}dinger equation with the initial
condition of a cutoff plane wave. For one level systems at resonance condition
we show that the buildup of the probability density obeys a simple charging up
law, where is the
stationary wave function and the transient time constant is exactly
two lifetimes. We illustrate that the above formula holds both for symmetrical
and asymmetrical potential profiles with typical parameters, and even for
incidence at different resonance energies. Theoretical evidence of a crossover
to non-exponential buildup is also discussed.Comment: 4 pages, 2 figure
Hestenes' Tetrad and Spin Connections
Defining a spin connection is necessary for formulating Dirac's bispinor
equation in a curved space-time. Hestenes has shown that a bispinor field is
equivalent to an orthonormal tetrad of vector fields together with a complex
scalar field. In this paper, we show that using Hestenes' tetrad for the spin
connection in a Riemannian space-time leads to a Yang-Mills formulation of the
Dirac Lagrangian in which the bispinor field is mapped to a set of Yang-Mills
gauge potentials and a complex scalar field. This result was previously proved
for a Minkowski space-time using Fierz identities. As an application we derive
several different non-Riemannian spin connections found in the literature
directly from an arbitrary linear connection acting on Hestenes' tetrad and
scalar fields. We also derive spin connections for which Dirac's bispinor
equation is form invariant. Previous work has not considered form invariance of
the Dirac equation as a criterion for defining a general spin connection
String Theory on Warped AdS_3 and Virasoro Resonances
We investigate aspects of holographic duals to time-like warped AdS_3
space-times--which include G\"odel's universe--in string theory. Using
worldsheet techniques similar to those that have been applied to AdS_3
backgrounds, we are able to identify space-time symmetry algebras that act on
the dual boundary theory. In particular, we always find at least one Virasoro
algebra with computable central charge. Interestingly, there exists a dense set
of points in the moduli space of these models in which there is actually a
second commuting Virasoro algebra, typically with different central charge than
the first. We analyze the supersymmetry of the backgrounds, finding related
enhancements, and comment on possible interpretations of these results. We also
perform an asymptotic symmetry analysis at the level of supergravity, providing
additional support for the worldsheet analysis.Comment: 24 pages + appendice
Switching the stereochemical outcome of 6-endo-trig cyclizations; Synthesis of 2,6-Cis-6-substituted 4-oxopipecolic acids
A base-mediated 6-endo-trig cyclization of
readily accessible enone-derived α-amino acids has been
developed for the direct synthesis of novel 2,6-cis-6-
substituted-4-oxo-L-pipecolic acids. A range of aliphatic and
aryl side chains were tolerated by this mild procedure to give
the target compounds in good overall yields. Molecular
modeling of the 6-endo-trig cyclization allowed some insight as
to how these compounds were formed, with the enolate
intermediate generated via an equilibrium process, followed by irreversible tautomerization/neutralization providing the driving force for product formation. Stereoselective reduction and deprotection of the resulting 2,6-cis-6-substituted 4-oxo-L-pipecolic acids to the corresponding 4-hydroxy-L-pipecolic acids was also performed
GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP
Full detector simulation was among the largest CPU consumer in all CERN
experiment software stacks for the first two runs of the Large Hadron Collider
(LHC). In the early 2010's, the projections were that simulation demands would
scale linearly with luminosity increase, compensated only partially by an
increase of computing resources. The extension of fast simulation approaches to
more use cases, covering a larger fraction of the simulation budget, is only
part of the solution due to intrinsic precision limitations. The remainder
corresponds to speeding-up the simulation software by several factors, which is
out of reach using simple optimizations on the current code base. In this
context, the GeantV R&D project was launched, aiming to redesign the legacy
particle transport codes in order to make them benefit from fine-grained
parallelism features such as vectorization, but also from increased code and
data locality. This paper presents extensively the results and achievements of
this R&D, as well as the conclusions and lessons learnt from the beta
prototype.Comment: 34 pages, 26 figures, 24 table
- …