792 research outputs found

    A quantum Monte-Carlo method for fermions, free of discretization errors

    Full text link
    In this work we present a novel quantum Monte-Carlo method for fermions, based on an exact decomposition of the Boltzmann operator exp(−βH)exp(-\beta H). It can be seen as a synthesis of several related methods. It has the advantage that it is free of discretization errors, and applicable to general interactions, both for ground-state and finite-temperature calculations. The decomposition is based on low-rank matrices, which allows faster calculations. As an illustration, the method is applied to an analytically solvable model (pairing in a degenerate shell) and to the Hubbard model.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let

    The effect of a multispecies probiotic on the composition of the faecal microbiota and bowel habits in chronic obstructive pulmonary disease patients treated with antibiotics

    Get PDF
    Short-term antibiotic treatment profoundly affects the intestinal microbiota, which may lead to sustained changes in microbiota composition. Probiotics may restore such a disturbance. The objective of the present study was to investigate the effect of a multispecies probiotic on the faecal microbiota during and after antibiotic intake in patients with a history of frequent antibiotic use. In this randomised, placebo-controlled, double-blind study, thirty chronic obstructive pulmonary disease (COPD) patients treated with antibiotics for a respiratory tract infection received 5 g of a multispecies probiotic or placebo twice daily for 2 weeks. Faecal samples were collected at 0, 7, 14 and 63 d. Changes in the composition of the dominant faecal microbiota were determined by PCR-denaturing gradient gel electrophoresis (DGGE). Changes in bacterial subgroups were determined by quantitative PCR and culture. Bowel movements were scored daily according to the Bristol stool form scale. During and after antibiotic treatment, DGGE-based similarity indices (SI) were high ( >/= 84 %) and band richness was relatively low, both remaining stable over time. No difference in SI was observed between patients with and without diarrhoea-like bowel movements. The multispecies probiotic had a modest effect on the bacterial subgroups. Nevertheless, it affected neither the composition of the dominant faecal microbiota nor the occurrence of diarrhoea-like bowel movements. The dominant faecal microbiota was not affected by antibiotics in this COPD population, suggesting an existing imbalance of the microbiota, which may also have contributed to the lack of effect by probiotic intak

    Solving the Richardson equations for Fermions

    Full text link
    Forty years ago Richardson showed that the eigenstates of the pairing Hamiltonian with constant interaction strength can be calculated by solving a set of non-linear coupled equations. However, in the case of Fermions these equations lead to singularities which made them very hard to solve. This letter explains how these singularities can be avoided through a change of variables making the Fermionic pairing problem numerically solvable for arbitrary single particle energies and degeneracies.Comment: 5 pages, 4 figures, submitted to Phys.Rev.

    Maximum occupation number for composite boson states

    Full text link
    One of the major differences between fermions and bosons is that fermionic states have a maximum occupation number of one, whereas the occupation number for bosonic states is in principle unlimited. For bosons that are made up of fermions, one could ask the question to what extent the Pauli principle for the constituent fermions would limit the boson occupation number. Intuitively one can expect the maximum occupation number to be proportional to the available volume for the bosons divided by the volume occupied by the fermions inside one boson, though a rigorous derivation of this result has not been given before. In this letter we show how the maximum occupation number can be calculated from the ground-state energy of a fermionic generalized pairing problem. A very accurate analytical estimate of this eigenvalue is derived. From that a general expression is obtained for the maximum occupation number of a composite boson state, based solely on the intrinsic fermionic structure of the bosons. The consequences for Bose-Einstein condensates of excitons in semiconductors and ultra cold trapped atoms are discussed.Comment: 4 pages, Revte

    Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis

    Get PDF
    Liver fibrosis is characterised by a dense and highly cross-linked extracellular matrix (ECM) which promotes progression of diseases such as hepatocellular carcinoma. The fibrotic microenvironment is characterised by an increased stiffness, with rigidity associated with disease progression. External stiffness is known to promote hepatic stellate cell (HSC) activation through mechanotransduction, leading to increased secretion of ECM components. HSCs are key effector cells which maintain the composition of the ECM in health and disease, not only by regulating secretion of ECM proteins such as collagen, but also ECM-degrading enzymes called matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). Uninhibited MMPs degrade ECM proteins to reduce external rigidity. Using fibronectin-coated polyacrylamide gels to alter substrate rigidity without altering ligand density, we show that fibrotic rigidities downregulate MMP-9 expression and secretion, and also upregulate secretion of TIMP-1, though not its expression. Using tissue immunofluorescence studies, we also report that the expression of MMP-9 is significantly decreased in activated HSCs in fibrotic tissues associated with hepatocellular carcinoma. This suggests the presence of a mechanical network that allows HSCs to maintain a fibrotic ECM, with external rigidity providing feedback which affects MMP-9 and TIMP-1 secretion, which may become dysregulated in fibrosis

    Naturalness in Cosmological Initial Conditions

    Full text link
    We propose a novel approach to the problem of constraining cosmological initial conditions. Within the framework of effective field theory, we classify initial conditions in terms of boundary terms added to the effective action describing the cosmological evolution below Planckian energies. These boundary terms can be thought of as spacelike branes which may support extra instantaneous degrees of freedom and extra operators. Interactions and renormalization of these boundary terms allow us to apply to the boundary terms the field-theoretical requirement of naturalness, i.e. stability under radiative corrections. We apply this requirement to slow-roll inflation with non-adiabatic initial conditions, and to cyclic cosmology. This allows us to define in a precise sense when some of these models are fine-tuned. We also describe how to parametrize in a model-independent way non-Gaussian initial conditions; we show that in some cases they are both potentially observable and pass our naturalness requirement.Comment: 35 pages, 8 figure

    A Sub-Picojoule per Bit Integrated Magneto-Optic Modulator on Silicon: Modeling and Experimental Demonstration

    Get PDF
    Integrated magneto-optic (MO) modulators are an attractive but not fully explored alternative to electro-optic (EO) modulators. They are current driven, structurally simple, and could potentially achieve high efficiency in cryogenic and room temperature environments where fJ bit−1 optical interfaces are needed. In this paper, the performance and energy efficiency of a novel MO modulator at room temperature are for the first time assessed. First, a model of the micro-ring-based modulator is implemented to investigate the design parameters and their influence on the performance. Then, a fabricated device is experimentally characterized to assess its performance in terms of bit rate and energy efficiency. The model shows efficient operation at 1.2 Gbps using a 16 mA drive current, consuming only 155 fJ bit−1. The experimental results show that the MO effect is suitable for modulation, achieving error-free operation above 16 mA with a power consumption of 258 fJ bit−1 at a transient limited data rate of 1.2 Gbps
    • …
    corecore