129 research outputs found

    Improving the twilight model for polar cap absorption nowcasts

    Get PDF
    During Solar Proton Events (SPE), energetic protons ionize the polar mesosphere causing HF radiowave attenuation, more strongly on the dayside where the effective recombination coefficient, αeff, is low. Polar cap absorption (PCA) models predict the 30 MHz cosmic noise absorption, A, measured by riometers, based on real-time measurements of the integrated proton flux-energy spectrum, J. However, empirical models in common use cannot account for regional and day-to-day variations in the day- and nighttime profiles of αeff(z) or the related sensitivity parameter, m=A/√J. Large prediction errors occur during twilight when m changes rapidly, and due to errors locating the rigidity cutoff latitude. Modeling the twilight change in m as a linear or Gauss error-function transition over a range of solar-zenith angles (χl < χ < χu) provides a better fit to measurements than selecting day or night αeff profiles based on the Earth-shadow height. Optimal model parameters were determined for several polar cap riometers for large SPEs in 1998-2005. The optimal χl parameter was found to be most variable, with smaller values (as low as 60°) post-sunrise compared with pre-sunset, and with positive correlation between riometers over a wide area. Day and night values of m exhibited higher correlation for closely spaced riometers. A nowcast simulation is presented in which rigidity boundary latitude and twilight model parameters are optimized by assimilating age-weighted measurements from 25 riometers. The technique reduces model bias, and root-mean-squared errors are reduced by up to 30% compared with a model employing no riometer data assimilation

    Exploring the stability of super heavy elements: First measurement of the fission barrier of 254No

    Get PDF
    The gamma-ray multiplicity and total energy emitted by the heavy nucleus 254No have been measured at 2 different beam energies. From these measurements, the initial distributions of spin I and excitation energy E * of 254No were constructed. The distributions display a saturation in excitation energy, which allows a direct determination of the fission barrier. 254No is the heaviest shell-stabilized nucleus with a measured fission barrier. © Owned by the authors, published by EDP Sciences, 2014

    Fission barrier of superheavy nuclei and persistence of shell effects at high spin: Cases of No 254 and Th 220

    Get PDF
    We report on the first measurement of the fission barrier height in a heavy shell-stabilized nucleus. The fission barrier height of No254 is measured to be Bf=6.0±0.5 MeV at spin 15 and, by extrapolation, Bf=6.6±0.9 MeV at spin 0. This information is deduced from the measured distribution of entry points in the excitation energy versus spin plane. The same measurement is performed for Th220 and only a lower limit of the fission barrier height can be determined: Bf(I)>8 MeV. Comparisons with theoretical fission barriers test theories that predict properties of superheavy elements

    Exploring the stability of super heavy elements: First measurement of the fission barrier of 254No

    Get PDF
    The gamma-ray multiplicity and total energy emitted by the heavy nucleus 254No have been measured at 2 different beam energies. From these measurements, the initial distributions of spin I and excitation energy E * of 254No were constructed. The distributions display a saturation in excitation energy, which allows a direct determination of the fission barrier. 254No is the heaviest shell-stabilized nucleus with a measured fission barrier

    Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in Rf 254

    Get PDF
    Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73)μs have been discovered in the heavy Rf254 nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the Kπ=8-, ν2(7/2+[624],9/2-[734]) two-quasineutron and the Kπ=16+, 8-ν2(7/2+[624],9/2-[734])⊗ - 8-π2(7/2-[514],9/2+[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. The four-quasiparticle isomer is longer lived than the Rf254 ground state that decays exclusively by spontaneous fission with a half-life of 23.2(1.1)μs. The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state
    • …
    corecore