342 research outputs found
Analytical Modelling of Jointed Precast Concrete Beam-to-Column Connections with Different Damping Systems
Jointed precast concrete systems typically have low inherent damping and are thus particularly suitable for applying supplemental damping systems. Analytical modelling is utilised to characterise jointed beam-to-column rocking connections, using a rate-dependent tri-linear compound version of the well-known Menegotto-Pinto rule. The analytical model is verified against near full-scale experimental results. The beam-column connections are constructed utilising Damage Avoidance Design (DAD) principles with unbonded post-tensioned tendons. High force-to-volume extrusion-based energy dissipaters are externally fitted to provide supplemental energy dissipation and modify joint hysteretic performance. Multiple joint configurations are analysed, with supplemental damping systems modified to investigate the effect of damping forces on joint hysteresis. Particular attention is given to the re-centring limit. Good agreement between the analytical models and experimental results is demonstrated, with discussion of possible improvements. Overall, system damping behaviour is significantly improved by adding the extrusion based damping system
An iterative semi-implicit scheme with robust damping
An efficient, iterative semi-implicit (SI) numerical method for the time
integration of stiff wave systems is presented. Physics-based assumptions are
used to derive a convergent iterative formulation of the SI scheme which
enables the monitoring and control of the error introduced by the SI operator.
This iteration essentially turns a semi-implicit method into a fully implicit
method. Accuracy, rather than stability, determines the timestep. The scheme is
second-order accurate and shown to be equivalent to a simple preconditioning
method. We show how the diffusion operators can be handled so as to yield the
property of robust damping, i.e., dissipating the solution at all values of the
parameter \mathcal D\dt, where is a diffusion operator and \dt
the timestep. The overall scheme remains second-order accurate even if the
advection and diffusion operators do not commute. In the limit of no physical
dissipation, and for a linear test wave problem, the method is shown to be
symplectic. The method is tested on the problem of Kinetic Alfv\'en wave
mediated magnetic reconnection. A Fourier (pseudo-spectral) representation is
used. A 2-field gyrofluid model is used and an efficacious k-space SI operator
for this problem is demonstrated. CPU speed-up factors over a CFL-limited
explicit algorithm ranging from to several hundreds are obtained,
while accurately capturing the results of an explicit integration. Possible
extension of these results to a real-space (grid) discretization is discussed.Comment: Submitted to the Journal of Computational Physics. Clarifications and
caveats in response to referees, numerical demonstration of convergence rate,
generalized symplectic proo
Supersymmetric solutions of PT-/non-PT-symmetric and non-Hermitian Screened Coulomb potential via Hamiltonian hierarchy inspired variational method
The supersymmetric solutions of PT-symmetric and Hermitian/non-Hermitian
forms of quantum systems are obtained by solving the Schrodinger equation for
the Exponential-Cosine Screened Coulomb potential. The Hamiltonian hierarchy
inspired variational method is used to obtain the approximate energy
eigenvalues and corresponding wave functions.Comment: 13 page
Hydrogen-Helium Mixtures at High Pressure
The properties of hydrogen-helium mixtures at high pressure are crucial to
address important questions about the interior of Giant planets e.g. whether
Jupiter has a rocky core and did it emerge via core accretion? Using path
integral Monte Carlo simulations, we study the properties of these mixtures as
a function of temperature, density and composition. The equation of state is
calculated and compared to chemical models. We probe the accuracy of the ideal
mixing approximation commonly used in such models. Finally, we discuss the
structure of the liquid in terms of pair correlation functions.Comment: Proceedings article of the 5th Conference on Cryocrystals and Quantum
Crystals in Wroclaw, Poland, submitted to J. Low. Temp. Phys. (2004
Bessel Process and Conformal Quantum Mechanics
Different aspects of the connection between the Bessel process and the
conformal quantum mechanics (CQM) are discussed. The meaning of the possible
generalizations of both models is investigated with respect to the other model,
including self adjoint extension of the CQM. Some other generalizations such as
the Bessel process in the wide sense and radial Ornstein- Uhlenbeck process are
discussed with respect to the underlying conformal group structure.Comment: 28 Page
Topological A-Type Models with Flux
We study deformations of the A-model in the presence of fluxes, by which we
mean rank-three tensors with antisymmetrized upper/lower indices, using the
AKSZ construction. Generically these are topological membrane models, and we
show that the fluxes are related to deformations of the Courant bracket which
generalize the twist by a closed 3-from , in the sense that satisfying the
AKSZ master equation implies the integrability conditions for an almost
generalized complex structure with respect to the deformed Courant bracket. In
addition, the master equation imposes conditions on the fluxes that generalize
. The membrane model can be defined on a large class of - and -structure manifolds, including geometries inspired by
supersymmetric -models with additional supersymmetries due to almost
complex (but not necessarily complex) structures in the target space.
Furthermore, we show that the model can be defined on three particular
half-flat manifolds related to the Iwasawa manifold.
When only -flux is turned on it is possible to obtain a topological string
model, which we do for the case of a Calabi-Yau with a closed 3-form turned on.
The simplest deformation from the A-model is due to the
component of a non-trivial -field. The model is generically no longer
evaluated on holomorphic maps and defines new topological invariants.
Deformations due to -flux can be more radical, completely preventing
auxiliary fields from being integrated out.Comment: 30 pages. v2: Improved Version. References added. v3: Minor changes,
published in JHE
Participatory action research in two communities in Bolivia and the United States
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66665/2/10.1177_002087289203500214.pd
- …