84 research outputs found

    What causes accidents?

    Get PDF
    This paper describes aspects of the findings of a three-year research project, Construction Accident Causality, funded by the UK Health and Safety Executive. The project developed a causality model, through a combination of focus groups and detailed study of 100 construction accidents, using an ergonomics systems approach, to identify where safety is compromised and why. It concludes that stakeholders responsible for the immediate accident circumstances, shaping factors and originating influences must all work hard to remove flaws in their safety systems to ensure that accidents are reduced

    The rise and fall of aspirin in the primary prevention of cardiovascular disease

    Get PDF
    Aspirin is one of the most frequently used drugs worldwide and is generally considered effective for the secondary prevention of cardiovascular disease. By contrast, the role of aspirin in primary prevention of cardiovascular disease is controversial. Early trials evaluating aspirin for primary prevention, done before the turn of the millennium, suggested reductions in myocardial infarction and stroke (although not mortality), and an increased risk of bleeding. In an effort to balance the risks and benefits of aspirin, international guidelines on primary prevention of cardiovascular disease have typically recommended aspirin only when a substantial 10-year risk of cardiovascular events exists. However, in 2018, three large randomised clinical trials of aspirin for the primary prevention of cardiovascular disease showed little or no benefit and have even suggested net harm. In this narrative Review, we reappraise the role of aspirin in primary prevention of cardiovascular disease, contextualising data from historical and contemporary trials

    Tests of Micro-Pattern Gaseous Detectors for Active Target Time Projection Chambers in nuclear physics

    Get PDF
    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm2 pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics

    From dynamical scaling to local scale-invariance: a tutorial

    Full text link
    Dynamical scaling arises naturally in various many-body systems far from equilibrium. After a short historical overview, the elements of possible extensions of dynamical scaling to a local scale-invariance will be introduced. Schr\"odinger-invariance, the most simple example of local scale-invariance, will be introduced as a dynamical symmetry in the Edwards-Wilkinson universality class of interface growth. The Lie algebra construction, its representations and the Bargman superselection rules will be combined with non-equilibrium Janssen-de Dominicis field-theory to produce explicit predictions for responses and correlators, which can be compared to the results of explicit model studies. At the next level, the study of non-stationary states requires to go over, from Schr\"odinger-invariance, to ageing-invariance. The ageing algebra admits new representations, which acts as dynamical symmetries on more general equations, and imply that each non-equilibrium scaling operator is characterised by two distinct, independent scaling dimensions. Tests of ageing-invariance are described, in the Glauber-Ising and spherical models of a phase-ordering ferromagnet and the Arcetri model of interface growth.Comment: 1+ 23 pages, 2 figures, final for

    Cassava processing wastewater as a platform for third generation biodiesel production

    Full text link
    ABSTRACT This study aimed to evaluate third generation biodiesel production by microalgae Phormidium autumnale using cassava processing wastewater as a platform. Experiments were performed in a heterotrophic bubble column bioreactor. The study focused on the evaluation of the bioreactor (batch and fed-batch) of different operational modes and the analysis of biofuel quality. Results indicate that fed-batch cultivations improved system performance, elevating biomass and oil productions to 12.0 g L−1 and 1.19 g L−1, respectively. The composition of this oil is predominantly saturated (60 %) and monounsaturated (39 %), resulting in a biodiesel that complys with U.S., European and Brazilian standards. The technological route developed indicates potential for sustainable production of bulk oil and biodiesel, through the minimization of water and chemical demands required to support such a process

    Studies of Neutron Stars at Optical/IR Wavelengths

    Get PDF
    In the last years, optical studies of Isolated Neutron Stars (INSs) have expanded from the more classical rotation-powered ones to other categories, like the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-ray Repeaters (SGRs), which make up the class of the magnetars, the radio-quiet INSs with X-ray thermal emission and, more recently, the enigmatic Compact Central Objects (CCOs) in supernova remnants. Apart from 10 rotation-powered pulsars, so far optical/IR counterparts have been found for 5 magnetars and for 4 INSs. In this work we present some of the latest observational results obtained from optical/IR observations of different types of INSs

    Heart failure in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies conference

    Get PDF
    The incidence and prevalence of heart failure (HF) and chronic kidney disease (CKD) are increasing, and as such a better understanding of the interface between both conditions is imperative for developing optimal strategies for their detection, prevention, diagnosis, and management. To this end, Kidney Disease: Improving Global Outcomes (KDIGO) convened an international, multidisciplinary Controversies Conference titled Heart Failure in CKD. Breakout group discussions included (i) HF with preserved ejection fraction (HFpEF) and nondialysis CKD, (ii) HF with reduced ejection fraction (HFrEF) and nondialysis CKD, (iii) HFpEF and dialysis-dependent CKD, (iv) HFrEF and dialysis-dependent CKD, and (v) HF in kidney transplant patients. The questions that formed the basis of discussions are available on the KDIGO website http://kdigo.org/conferences/heart-failure-in-ckd/, and the deliberations from the conference are summarized here

    Low-lying single-particle structure of 17C and the N = 14 sub-shell closure

    Get PDF
    The first investigation of the single-particle structure of the bound states of 17C, via the C transfer reaction, has been undertaken. The measured angular distributions confirm the spin-parity assignments of and for the excited states located at 217 and 335 keV, respectively. The spectroscopic factors deduced for these states exhibit a marked single-particle character, in agreement with shell model and particle-core model calculations, and combined with their near degeneracy in energy provide clear evidence for the absence of the sub-shell closure. The very small spectroscopic factor found for the ground state is consistent with theoretical predictions and indicates that the strength is carried by unbound states. With a dominant valence neutron configuration and a very low separation energy, the excited state is a one-neutron halo candidate
    • …
    corecore