53,567 research outputs found

    Creation of blenders in the conservative setting

    Full text link
    In this work we prove that each C^r conservative diffeomorphism with a pair of hyperbolic periodic points of co-index one can be C^1-approximated by C^r conservative diffeomorphisms having a blender.Comment: 4 figures, 16 figure

    Surface Waves and Forced Oscillations in QHE Planar Samples

    Full text link
    Dispersion relations and polarizations for surface waves in infinite planar samples in the QHE regime are explicitly determined in the small wavevector limit in which the dielectric tensor can be considered as local. The wavelength and frequency regions of applicability of the results extends to the infrared region for typical experimental conditions. Then, standard samples with millimetric sizes seem to be able to support such excitations. Forced oscillations are also determined which should be generated in the 2DEG by external electromagnetic sources. They show an almost frequency independent wavevelength which decreases with the magnetic field. A qualitative model based in these solutions is also presented to describe a recently found new class of resonances appearing near the edge of a 2DEG in the QHE regime.Comment: latex file, 18 pages, 3 figures, spelling correcte

    Identifying the lights position in photometric stereo under unknown lighting

    Full text link
    Reconstructing the 3D shape of an object from a set of images is a classical problem in Computer Vision. Photometric stereo is one of the possible approaches. It stands on the assumption that the object is observed from a fixed point of view under different lighting conditions. The traditional approach requires that the position of the light sources is accurately known. It has been proved that the lights position can be estimated directly from the data, when at least 6 images of the observed object are available. In this paper, we give a Matlab implementation of the algorithm for solving the photometric stereo problem under unknown lighting, and propose a simple shooting technique to solve the bas-relief ambiguity.Comment: new versio

    Improving the applicability of radar rainfall estimates for urban pluvial flood modelling and forecasting

    Get PDF
    This work explores the possibility of improving the applicability of radar rainfall estimates (whose accuracy is generally insufficient) to the verification and operation of urban storm-water drainage models by employing a number of local gauge-based radar rainfall adjustment techniques. The adjustment techniques tested in this work include a simple mean-field bias (MFB) adjustment, as well as a more complex Bayesian radar-raingauge data merging method which aims at better preserving the spatial structure of rainfall fields. In addition, a novel technique (namely, local singularity analysis) is introduced and shown to improve the Bayesian method by better capturing and reproducing storm patterns and peaks. Two urban catchments were used as case studies in this work: the Cranbrook catchment (9 km2) in North-East London, and the Portobello catchment (53 km2) in the East of Edinburgh. In the former, the potential benefits of gauge-based adjusted radar rainfall estimates in an operational context were analysed, whereas in the latter the potential benefits of adjusted estimates for model verification purposes were explored. Different rainfall inputs, including raingauge, original radar and the aforementioned merged estimates were fed into the urban drainage models of the two catchments. The hydraulic outputs were compared against available flow and depth records. On the whole, the tested adjustment techniques proved to improve the applicability of radar rainfall estimates to urban hydrological applications, with the Bayesian-based methods, in particular the singularity sensitive one, providing more realistic and accurate rainfall fields which result in better reproduction of the urban drainage system’s dynamics. Further testing is still necessary in order to better assess the benefits of these adjustment methods, identify their shortcomings and improve them accordingly

    Crossover between the Dense Electron-Hole Phase and the BCS Excitonic Phase in Quantum Dots

    Full text link
    Second order perturbation theory and a Lipkin-Nogami scheme combined with an exact Monte Carlo projection after variation are applied to compute the ground-state energy of 6N2106\le N\le 210 electron-hole pairs confined in a parabolic two-dimensional quantum dot. The energy shows nice scaling properties as N or the confinement strength is varied. A crossover from the high-density electron-hole phase to the BCS excitonic phase is found at a density which is roughly four times the close-packing density of excitons.Comment: Improved variational and projection calculations. 17 pages, 3 ps figures. Accepted for publication in Int. J. Mod. Phys.

    Generating Bounds for the Ground State Energy of the Infinite Quantum Lens Potential

    Full text link
    Moment based methods have produced efficient multiscale quantization algorithms for solving singular perturbation/strong coupling problems. One of these, the Eigenvalue Moment Method (EMM), developed by Handy et al (Phys. Rev. Lett.{\bf 55}, 931 (1985); ibid, {\bf 60}, 253 (1988b)), generates converging lower and upper bounds to a specific discrete state energy, once the signature property of the associated wavefunction is known. This method is particularly effective for multidimensional, bosonic ground state problems, since the corresponding wavefunction must be of uniform signature, and can be taken to be positive. Despite this, the vast majority of problems studied have been on unbounded domains. The important problem of an electron in an infinite quantum lens potential defines a challenging extension of EMM to systems defined on a compact domain. We investigate this here, and introduce novel modifications to the conventional EMM formalism that facilitate its adaptability to the required boundary conditions.Comment: Submitted to J. Phys.

    Collective resonances in plasmonic crystals: Size matters

    Full text link
    Periodic arrays of metallic nanoparticles may sustain Surface Lattice Resonances (SLRs), which are collective resonances associated with the diffractive coupling of Localized Surface Plasmon Resonances (LSPRs). By investigating a series of arrays with varying number of particles, we traced the evolution of SLRs to its origins. Polarization resolved extinction spectra of arrays formed by a few nanoparticles were measured, and found to be in very good agreement with calculations based on a coupled dipole model. Finite size effects on the optical properties of the arrays are observed, and our results provide insight into the characteristic length scales for collective plasmonic effects: for arrays smaller than 5 x 5 particles, the Q-factors of SLRs are lower than those of LSPRs; for arrays larger than 20 x 20 particles, the Q-factors of SLRs saturate at a much larger value than those of LSPRs; in between, the Q-factors of SLRs are an increasing function of the number of particles in the array.Comment: 4 figure

    Analytical results for a Bessel function times Legendre polynomials class integrals

    Full text link
    When treating problems of vector diffraction in electromagnetic theory, the evaluation of the integral involving Bessel and associated Legendre functions is necessary. Here we present the analytical result for this integral that will make unnecessary numerical quadrature techniques or localized approximations. The solution is presented using the properties of the Bessel and associated Legendre functions.Comment: 4 page
    corecore