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ABSTRACT 

This work explores the possibility of improving the applicability of radar rainfall estimates (whose 
accuracy is generally insufficient) to the verification and operation of urban storm-water drainage 
models by employing a number of local gauge-based radar rainfall adjustment techniques. The 
adjustment techniques tested in this work include a simple mean-field bias (MFB) adjustment, as 
well as a more complex Bayesian radar-raingauge data merging method which aims at better 
preserving the spatial structure of rainfall fields. In addition, a novel technique (namely, local 
singularity analysis) is introduced and shown to improve the Bayesian method by better capturing 
and reproducing storm patterns and peaks. Two urban catchments were used as case studies in this 
work: the Cranbrook catchment (9 km2) in North-East London, and the Portobello catchment 
(53 km2) in the East of Edinburgh. In the former, the potential benefits of gauge-based adjusted 
radar rainfall estimates in an operational context were analysed, whereas in the latter the potential 
benefits of adjusted estimates for model verification purposes were explored. Different rainfall 
inputs, including raingauge, original radar and the aforementioned merged estimates were fed into 
the urban drainage models of the two catchments. The hydraulic outputs were compared against 
available flow and depth records. On the whole, the tested adjustment techniques proved to 
improve the applicability of radar rainfall estimates to urban hydrological applications, with the 
Bayesian-based methods, in particular the singularity sensitive one, providing more realistic and 
accurate rainfall fields which result in better reproduction of the urban drainage system’s dynamics. 
Further testing is still necessary in order to better assess the benefits of these adjustment methods, 
identify their shortcomings and improve them accordingly. 

KEYWORDS: radar, gauge-based adjustment, urban drainage, pluvial flooding, urban hydrology.  

 

1. INTRODUCTION 

Rainfall constitutes the main input for urban pluvial flood models and the uncertainty associated to 
it dominates the overall uncertainty in the modelling and forecasting of this type of flooding 
(Golding, 2009). Traditionally, urban drainage modelling applications have relied mainly upon 
raingauge data as input, given that these sensors provide accurate point rainfall estimates near the 
ground. However, they cannot capture the spatial variability of rainfall, which has a significant 
impact on the urban hydrological system and thus on the modelling of urban pluvial flooding (Tabios 
& Salas, 1985; Syed et al., 2003). With the advent of weather radars, radar rainfall estimates with 
higher temporal and spatial resolution have become increasingly available and have started to be 
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used operationally for urban storm-water model calibration and real-time operation. Nonetheless, 
the insufficient accuracy of radar rainfall estimates, which is particularly critical in the case of 
extreme rainfall magnitudes (Einfalt et al., 2005; Harrison et al., 2009), has proven problematic and 
has hindered its widespread practical use (Schellart et al., 2012). In order to improve the accuracy of 
radar rainfall estimates while preserving their spatial description of rainfall fields, it is possible to 
dynamically adjust them based on raingauge measurements. Studies on this subject have been 
carried out over the last few years and gauge-based radar rainfall adjustment techniques have been 
widely employed by country-scale meteorological services (Cole & Moore, 2008; Goudenhoofdt & 
Delobbe, 2009; Harrison et al., 2009). However, these studies and applications have focused on 
large-scales and, in general, their applicability to urban hydrology is insufficient. Local re-adjustment 
is therefore required before radar rainfall data can be used as input to urban hydrological/hydraulic 
models (Wang et al., 2013). 

This work explores the possibility of improving the applicability of radar rainfall estimates to the 
calibration and operation of urban storm-water drainage models by employing a number of local 
gauge-based radar rainfall adjustment techniques. The adjustment techniques tested in this work 
include a simple mean-field bias (MFB) adjustment, as well as a more complex Bayesian 
radar-raingauge data merging method which aims at better preserving the spatial structure of 
rainfall fields. In addition, a novel technique (namely, local singularity analysis) is introduced which 
improves the Bayesian method by better capturing and reproducing storm patterns and peaks.  

Two urban catchments for which raingauge, radar, flow and depth measurements are available were 
used as case studies in this work: the Cranbrook catchment (9 km2) in North-East London and the 
Portobello catchment (53 km2) in the East of Edinburgh. In the former, the potential benefits of 
gauge-based adjusted radar rainfall estimates in an operational context were analysed (storm events 
outside of the verification period were used in the analysis). In contrast, in the Portobello catchment 
the potential benefits of adjusted estimates for model verification purposes were explored (the 
dataset used in the analysis corresponds to the flow survey used for the verification of the model). 
Different rainfall inputs, including raingauge (distributed using Thiessen polygons), block-kriged 
interpolated raingauge, original radar (i.e. Met Office Nimrod product (Golding, 1998)) and the 
aforementioned merged estimates were fed into the urban drainage models of the two catchments. 
The different rainfall estimates and the associated hydraulic outputs were inter-compared. In 
addition, the hydraulic outputs were also compared against available flow and depth records.  

The paper is organised as follows: in the next section a description is provided of the rainfall 
processing techniques used in this study, including the kriging (raingauge) interpolation method, as 
well as the gauge-based radar rainfall adjustment methods mentioned above. Afterwards, the test 
catchments and datasets used in the study are described, and the hydraulic models specified. 
Subsequently, the resulting rainfall estimates and associated hydraulic outputs are presented and 
discussed. Lastly, the main conclusions and implications of the study are presented and the future 
work in this area is discussed.  

 

2. RAINFALL PROCESSING TECHNIQUES 

As mentioned above, in this work a simple mean-field bias (MFB) adjustment technique as well as 
two Bayesian-based merging procedures were used with the aim of improving the applicability of 
radar rainfall estimates to urban hydrological applications. In addition, the original point-raingauge 
data was interpolated using a block-kriging method; this was done with the purpose of generating a 
raingauge-based rainfall field which could serve as basis for the Bayesian merging procedures and 
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which would also allow direct comparison with other types of areal rainfall estimates. In what 
follows a brief description is provided of each of these techniques. 

2.1. BLOCK-KRIGING (BK) INTERPOLATION 

Kriging is a geostatistical technique that enables the prediction (or interpolation) of values at 
unknown locations by linearly combining the surrounding known values (Armstrong, 1998), and the 
epithet ’Block’ refers to the application of this technique to predicting (interpolating) areal averages 
over a grid-square rather than point values. The interpolated value is thus 

  (  )  ∑    (  ) Equation 1 

where   (  ) represents an unknown value at a specific location   ,  (  ) are known values at 
locations   , and    are the weighting factors. These weighting factors are determined based upon 
the spatial association (in terms of co-variance or semi-variogram) of the known values. This 
suggests that the (block-) kriged rainfall field contains not only accurate rainfall estimates, but also 
(part of) the spatial dependencies between these point estimates over a specific area. In addition, 
kriging gives the best unbiased estimates of point values or areal averages (where “best” means that 
the estimation error variance is minimised).  

In this work Block-kriging interpolation is used to produce unbiased rainfall estimates at each radar 
grid location. In this way it is possible to have a raingauge-based rainfall field with the same 
resolution as that of the radar and merged rainfall fields. Besides allowing direct comparison with 
other types of areal rainfall estimates, the blocked-kriged interpolated field serves as basis for the 
Bayesian merging methods described below.  

2.2. MEAN-FIELD BIAS (MFB) GAUGE-BASED RADAR RAINFALL ADJUSTMENT 

The MFB was computed by the following equation:  

   ∑  ∑  ⁄  Equation 2 

where RG and RD represent the raingauge and radar accumulations, respectively, over a specific 
time interval at a particular location. The summation is carried out using all raingauges available 
within the radar domain and also using a moving window that takes into account the last 1h of 
rainfall data to simulate real-time operation. The adjusted radar rainfall (RD') is calculated by 
multiplying the bias (B) obtained at a particular time step by the original rainfall field (RD), that is, 
        . Maximum bias correction factors were set to 3.0 in order to avoid too large 
adjustments.  

2.3. BAYESIAN (BAY) GAUGE-BASED RADAR RAINFALL MERGING 

The Bayesian merging (BAY) is a dynamic method intended for real-time applications (Todini, 2001). 
It has been proven to outperform many other merging techniques in numerical experiments 
(Mazzetti & Todini, 2004) and in urban-scale hydrological applications (Wang et al., 2013). The 
underlying idea is to analyse the uncertainty of rainfall estimates from different sources (in this case 
radar and raingauge sensors) and combine these estimates in such a way that the overall uncertainty 
is minimised. The first step of the method is, for each time step, to interpolate the raingauge 
measurements into a synthetic rainfall field using the BK interpolation method described above 
(steps (a) and (c) in Figure 1). This step generates comparable areal raingauge rainfall estimates to 
the radar estimates, based upon which a field of errors (i.e. the bias at each radar grid location) can 
be constructed (steps (d) and (e) in Figure 1). The covariance of this error field (representing the 
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uncertainty of radar estimates) can be further analysed and compared with the estimation 
uncertainty of BK interpolation (representing the uncertainty of RG estimation). A Kalman filter 
(Kalman, 1960) is then applied  (step (e) in Figure 1) to evaluate these two sources of uncertainty 
and based on this comparison, adjust the radar estimates so that the overall uncertainty is 
minimised (steps (e) and (f)). This method was developed for and initially applied at large temporal 
and spatial scales and its suitability for urban hydrological applications has just started to be 
explored (Wang et al., 2013).  

 

 
Figure 1: Schematic of Bayesian radar-raingauge data merging (Todini, 2001). This figure was adapted from 

Figure 3 of Ehret et al. (2008). 

2.4. SINGULARITY-SENSITIVE (SIN) BAYESIAN GAUGE-BASED RADAR RAINFALL 
MERGING 

The singularity-sensitive Bayesian method has been recently developed with the purpose of 
improving a shortcoming of the original BAY method and of other merging methods which have 
similar underlying principles. The BAY method and several other merging techniques are mainly 
based upon 1st or 2nd order (statistical-) moment approximations and cannot properly cope with the 
non-normality observed in small-scale applications (e.g. urban hydrological modelling). In fact, it is 
often the case that the radar image captures striking local extremes (albeit the actual rainfall depths 
may be inaccurate), but these structures are lost or smoothened through the merging process. 
These striking local extremes correspond to singularity points within the rainfall field and can be 
identified through a local singularity analysis. With the purpose of improving this aspect, the SIN 
methodology has been developed which identifies the local extremes or ‘singularities’ of radar 
rainfall fields and preserves them throughout the merging process (Wang & Onof, 2013). 
Singularities are defined through the fact that the areal average rainfall increases as a power 
function when the area decreases (Schertzer & Lovejoy, 1987; Cheng et al., 1994). In its 
implementation, the SIN method follows a similar procedure to that of the BAY method. The only 
difference is that, before radar estimates are compared with the BK rainfall estimates, the 
singularities are firstly identified and extracted from the radar rainfall field (between steps (b) and 
(d)). The resulting non-singular radar field is then used in the normal merging process and the 
singularities are subsequently and proportionally added back to the final merged rainfall field. The 
issue with singularities is that these make the radar field apparently highly uncertain, thus resulting 
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in the radar field being given less weight in the merging process (steps e and f in Figure 1). This can 
cause smoothing of rainfall extremes whose spatial structure was actually well captured by the 
radar. Therefore, by removing the singularities before the merging takes place and applying them 
back afterwards, it is possible to better preserve rainfall extremes within the rainfall field. It is worth 
mentioning that the ’degree of singularity’ removed from the radar field is a tuneable parameter; an 
average value has been used in this study and work is underway to explore the sensitivity and 
impact of this parameter on the final rainfall product and associated hydraulic outputs.  

3. EXPERIMENTAL SITES AND DATASETS 

As mentioned above, two catchments were used for testing the suitability of the locally gauge-based 
adjusted radar rainfall estimates. A description of each of these catchments and the local monitoring 
data (including raingauge, flow and depth data) available at each of them and used in this study is 
next provided.  

In addition to the local monitoring data, both catchments are within the coverage of C-band radars 
operated by the UK Met Office. Radar rainfall estimates for both catchments are available through 
the British Atmospheric Data Centre (BADC) with spatial and temporal resolutions of 1 km and 5 min, 
respectively. These estimates correspond to a quality-controlled and multi-radar composite product 
generated with the UK Met Office Nimrod system, which includes corrections for the different errors 
inherent to radar rainfall measurements (Golding, 1998). 

3.1. CRANBROOK CATCHMENT 

Catchment description: The Cranbrook catchment is located within the London Borough of 
Redbridge (north-east part of Greater London - Figure 2a). It is predominantly urbanised and has a 
drainage area of approximately 9 km2. The main water course is about 5.75 km long, of which 5.69 
km are culverted and have become part of the storm water drainage system, which is mainly 
separate. The storm water drainage system of this catchment discharges into the Roding River and, 
in turn, the Roding River discharges into the river Thames. This area has experienced several pluvial, 
fluvial and coincidental flooding in the past. 

  

Figure 2: Cranbrook catchment (a) general location; (b) sensor location, sewer network and radar grid over the 
catchment.  

(b)  

A 

(a) 
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Hydraulic model: The model of the sewer system of this catchment (Figure 2b) is setup in InfoWorks 
CS and comprises 1,763 nodes and 1,816 pipes. Rainfall is applied to the model through 
subcatchments and runoff is estimated using the NewUK model. This model was obtained from the 
water company of the area and was initially verified in 2009 using data from a medium term flow 
survey (using solely raingauge data as input). The model was updated and re-verified in 2010 using 
data from the local monitoring system described below. 

Local monitoring data available for this catchment: A real time accessible monitoring system has 
been maintained in the Cranbrook catchment since April 2010. It includes three tipping bucket 
raingauges (with 1 min resolution), two pressure sensor for monitoring water levels at the Roding 
River (downstream boundary condition of the catchment), two sensors for water depth 
measurement in sewers and one sensor for water depth measurement in open channels (with 2 min 
resolution) (see Figure 2b). Data collected through this monitoring system, in addition to radar 
rainfall data (at 1 km and 5 min resolution) obtained from the BADC were used in this study. 

Storm events selected for this study: Two storm events respectively in August 2010 and May 2011 
were selected to test the gauge-based adjustment methods. These events are different from those 
used for the verification of the model. The dates and main characteristics of these events are 
summarised in Table 1.  

Table 1: Rainfall events selected for testing of adjustment methods in the Cranbrook catchment.  

Event Date 
Duration  

(h) 
RG Total 

(mm) 
RG Peak Intensity 

(mm/h) 
RD Total 

(mm) 
RD Peak Intensity 

(mm/h) 

Storm 1 23/08/2010 8 23.53 15.20 6.80 3.41 

Storm 2 26/05/2011 9 15.53 36.00 4.77 7.38 

RG = Raingauge; RD = Radar. NOTE: The accumulation and peak intensity values shown in this table correspond to areal mean values for 
the entire domain under consideration. 

3.2. PORTOBELLO CATCHMENT 

Catchment description: Portobello is a beach town located 5 km to the east of the city centre of 
Edinburgh, along the cost of the Firth of Forth, in Scotland  (Figure 3a). The catchment is 
predominantly urban and has a drainage area of approximately 53 km2. The storm water drainage 
system is mainly separate and drains from the south-west to the north-east (towards the sea). 

Hydraulic model: The model of the sewer system of the Portobello catchment (Figure 3b) is setup in 
InfoWorks CS and was verified in 2011 based on the medium term flow survey data described below 
(using solely raingauge data as input). It comprises 2,916 nodes and 2,906 conduits. Rainfall is 
applied to the model through subcatchments and runoff is estimated using the NewUK model. 

Local monitoring data available for this catchment: The only local monitoring data available for this 
catchment is that of the medium term flow survey used for the verification of the model. The flow 
survey was carried out between April and June 2011 and comprises data from 12 raingauges and 28 
flow gauges (Figure 3b). Radar rainfall estimates (at 1 km and 5 min resolution) for the same period 
of the flow survey were obtained from the BADC. 

Storm events selected for this study: During the flow survey monitoring period, three relatively large 
storms were recorded and were used for the verification of the model. The same three storm 
events were used in this study to test the gauge-based adjustment methods. The dates and main 
characteristics of these events are summarised in Table 2. 
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 Figure 3: Portobello catchment (a) general location; (b) sensor location, sewer network and radar grid over the 

catchment.  

Table 2: Rainfall events selected for testing of adjustment methods in the Portobello catchment.  

Event Date 
Duration 

(h) 
RG Total 

(mm) 
RG Peak Intensity 

(mm/h) 
RD Total 

(mm) 
RD Peak Intensity 

(mm/h) 

Storm 1 06-07/05/2011 7 9.25 11.21 9.67 7.29 

Storm 2 23/05/2011 7 7.70 5.03 10.80 4.80 

Storm 3 21-22/06/2011 24 32.96 8.46 25.85 5.42 

RG = Raingauge; RD = Radar. NOTE: The accumulation and peak intensity values shown in this table correspond to areal mean values for 
the entire domain under consideration. 

 

4. RESULTS AND DISCUSSION 

Firstly, features of the rainfall estimates resulting from the different interpolation and adjustment 
techniques are presented and discussed. Then, the hydraulic outputs resulting from each rainfall 
input are presented, inter-compared and discussed. A summary of the main findings from each of 
these analyses is given at the end of each sub-section. 

4.1. RAINFALL ESTIMATES 

Summaries of the main statistics of the different rainfall estimates for the storm events under 
consideration in the Cranbrook and Portobello catchments are presented, respectively, in Table 3 
and Table 4. In these tables comparisons are presented of the areal average and individual (i.e. point 
or grid square) rainfall accumulations and peak intensities for the different rainfall estimates (i.e. 
raingauge (RG), radar (RD), MFB adjusted, BAY merged and SIN merged). 

  

(a) (b) 

FM1 

FM8 

FM23 



 

UDG Autumn Conference & Exhibition 2013 
Future Thinking and Challenges 

Wed 13 Nov 2013 – Fri 15 Nov 2013 
East Midlands Conference Centre, Nottingham 

 

Page 8 of 19 

 

Table 3: Summary statistics of the different rainfall estimates for the two storm events under consideration in 
the Cranbrook catchment 

 Areal average 
values 

Max/min values at individual RG 
locations and RD grids (Max/min ratio)  

Rainfall 
estimates / 
Storm Event 

S1 S2 S1 S2 

To
ta

l r
ai

n
fa

ll 

ac
cu

m
u

la
ti

o
n

 (
m

m
) RG 23.53 15.53 23.80/23.20 (1.03) 16.40/14.00 (1.17) 

RD 6.80 4.77 8.17/5.92 (1.38) 7.35/3.35 (2.19) 

BK 22.23 12.75 22.85/21.78 (1.05) 13.60/12.30 (1.11) 

MFB 18.06 11.11 21.70/15.59 (1.39) 17.62/8.10 (2.18) 

BAY 18.8 12.31 19.48/18.20 (1.07) 14.06/11.36 (1.24) 

SIN 19.47 14.07 22.84/16.15 (1.41) 17.98/11.05 (1.63) 

P
e

ak
 r

ai
n

fa
ll 

in
te

n
si

ty
 (

m
m

/h
) 

RG 15.20 36.00 19.20/19.20 (1.00) 55.20/26.40 (2.09) 

RD 2.43 7.38 7.69/3.31 (2.32) 21.00/3.72 (5.56) 

BK 14.57 23.89 16.03/14.02 (1.14) 38.55/14.94 (2.58) 

MFB 7.29 22.15 23.06/9.56 (2.41) 63.00/11.16 (5.65) 

BAY 13.59 25.51 15.09/12.52 (1.21) 34.34/20.02 (1.72) 

SIN 13.54 37.21 41.40/12.14 (3.41) 64.09/18.29 (3.50) 

 

Table 4: Summary statistics of the different rainfall estimates for the three storm events under consideration 
in the Portobello catchment 

 
Areal average values 

Max/min values at individual RG locations and RD grids 
(Max/min ratio)  

Rainfall 
estimates / 
Storm Event 

S1 S2 S3 S1 S2 S3 

To
ta

l r
ai

n
fa

ll 

ac
cu

m
u

la
ti

o
n

 (
m

m
) RG 9.25 7.70 32.96 11.20/8.20 (1.37) 11.20/5.00 (2.24) 40.00/24.80 (1.61) 

RD 9.67 10.80 25.85 15.66/7.62 (2.06) 19.92/6.75 (2.95) 44.79/17.89 (2.50) 

BK 9.02 7.50 30.69 10.16/8.30 (1.22) 9.52/5.63 (1.69) 36.56/25.68 (1.42) 

MFB 8.47 7.13 31.94 14.85/6.25 (2.38) 13.30/4.60 (2.89) 49.54/21.81 (2.27) 

BAY 8.80 7.51 26.94 10.93/7.96 (1.37) 10.82/4.97 (2.18) 32.62/21.25 (1.54) 

SIN 9.66 7.56 33.73 14.08/7.28 (1.93) 12.74/4.54 (2.81) 52.71/21.63 (2.44) 

P
e

ak
 r

ai
n

fa
ll 

in
te

n
si

ty
 (

m
m

/h
) 

RG 11.21 5.03 8.46 20.40/9.60 (2.13) 10.80/2.70 (4.00) 16.80/7.20 (2.33) 

RD 7.29 4.80 5.42 63.09/5.72 (11.03) 17.75/2.97 (5.98) 37.47/5.91 (6.34) 

BK 10.26 4.33 7.07 14.43/9.35 (1.54) 6.82/2.82 (2.42) 13.82/5.94 (2.33) 

MFB 8.33 5.20 6.35 73.02/5.28 (13.83) 17.12/1.96 (8.73) 37.32/7.31 (5.11) 

BAY 9.99 3.96 6.65 15.17/8.58 (1.77) 7.14/2.42 (2.95) 12.51/5.77 (2.17) 

SIN 12.02 5.01 7.83 58.25/5.74 (10.15) 15.43/2.39 (6.46) 58.76/8.16 (7.20) 
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As can be seen in Table 3and Table 4, the behaviour of RD estimates in relation to RG estimates 
changes significantly from event to event in each of the catchments. For the Cranbrook catchment 
(Table 3), due to serious blockage of the radar beam, the RD largely underestimates areal rainfall 
accumulations in both events; however, the degree of underestimation is not constant, but instead 
changes for different intensities and storm types.  For the Portobello catchment (Table 4), the RG-RD 
biases (Equation 2) are relatively minor; however, similarly to the Cranbrook catchment, their 
magnitude is not constant. In Storm 1 of Portobello RG and RD areal average accumulation are quite 
similar (i.e. bias ≈ 1), but this is not the case in Storm 2 (RG areal accumulation < RD average 
accumulation; bias < 1) and Storm 3 (RG areal accumulation > RD average accumulation; bias > 1).  

The fact that the bias is event varying means that a single (or a constant) RG-RD relationship is 
insufficient to characterise it; this confirms the need for localised and dynamic adjustment of radar 
rainfall estimates. Beyond the bias, the most striking dissimilarity between RG and RD estimates is 
the large difference in the ratios between the maximum and minimum rainfall accumulations and 
peak intensities recorded at point or grid locations within the domain (i.e. Max/min ratio). Notice, 
for example, the large difference in the RG and RD Max/min peak intensity ratios in Storm 1 of 
Portobello catchment (this ratio is 2.13 for RG and 11.03 for RD estimates). The fact that higher 
Max/min ratios are observed in the RD rainfall estimates indicates that it has a significantly higher 
spatial variability, as compared to the RG rainfall estimates. In addition, a trend can be observed in 
the difference in the RG and RD Max/min peak intensity ratios to increase as larger peak intensities 
occur in a storm (e.g. Cranbrook’s Storm 2 and Portobello’s Storm 1).   

As would be expected, the BK estimates exhibit areal average accumulations similar to those of the 
RG. However, their Max/min ratios are slightly different; this could be caused by the fact that the RG 
represents point estimates and the BK represents areal estimates (i.e. the area-point rainfall 
difference; see Anagnostou et al. (1999)).  

When looking at the adjusted or merged rainfall products (i.e. MFB, BAY and SIN), it can be noticed 
that their areal accumulations are, in general, close to those of the RG. This means that the 
adjustment methods can effectively correct the bias; this is especially evident in the Cranbrook 
catchment, where the big cumulative biases are largely reduced. Nonetheless, from the analysis of 
their Max/min ratios it can be noticed that not all methods are able of preserving the highly variable 
spatial structure observed in the RD field. In this sense, the BAY and BK estimates exhibit a similar 
behaviour, with Max/min ratios (in particular for the peak intensities) much smaller than those 
obtained for other adjusted estimates. This indicates that during the BAY merging process, the BK 
raingauge interpolated estimates were largely trusted and therefore the high spatial variability 
observed in RD estimates was smoothed off. In contrast, the MFB and SIN adjusted estimates 
present higher Max/min ratios which are closer to those of the original RD estimates (this is 
particularly evident in the SIN estimates). This indicates that the MFB and SIN techniques are 
capable of reducing RG/RD bias while at the same time preserving the spatial variability of RD 
estimates. 

The initial conclusions drawn from Tables 3 and 4 can be confirmed by looking at images of the 
spatial structure of the peak intensities for each type of rainfall estimate (Figure 4).  It can be seen 
that, as compared to other estimates, the BK and BAY estimates are relatively smooth and their 
spatial structures are rather unrealistic; this is particularly the case for the BK estimates. Although 
both BAY and SIN are merged estimates and their spatial structures are somewhat the combination 
of those of the BK and RD estimates, the SIN estimates appear to be more spatially variable and 
realistic than the BAY ones and show to have preserved and even enhanced the storm cells observed 
in the original RD image. As for the MFB estimates, these show nearly the same structure as the RD 
estimates but with higher rainfall intensity at each grid square.  
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(a) Cranbrook catchment Storm 2: 26/05/2011 15.20 

 

(b) Portobello catchment Storm 1: 07/05/2011 00.45 

 

Figure 4: Images of RD, BK and adjusted rainfall estimates at peak intensity times of (a) Cranbrook’s Storm 2 
and (b) Portobello’s Storm 1. 

A further comparison of areal average RG intensities versus areal average BK, RD and adjusted 
estimates’ intensities throughout the whole storm period is presented in Figure 5.  As expected, BK 
estimates are in good agreement with RG estimates. With regards to RD estimates, it can be seen 
that for the Cranbrook storms they consistently underestimate the entire range of rainfall intensity, 
while for the Portobello catchment, they tend to overestimate small rainfall rates and underestimate 
the peak intensities. The consistent underestimation in Cranbrook is mainly caused by strong 
blockage interference. The situation observed in Portobello can be explained by the fact that the Z-R 
conversion that is used to convert radar reflectivity to rainfall rate has to statistically compromise to 
the range of rainfall rates that frequently occur (whereas the occurrence of very small and large 
intensities is relatively rare). It can be seen that both sources of error in RD estimates can be largely 
improved through adjustment techniques. Promising results are obtained from the BAY and, in 
particular, from the SIN merging methods, which are able of well reproducing low as well as high 
rainfall rates. As compared to the RD estimates, the MFB method does not seem to provide 
significant improvements in this direction and its performance is especially poor at higher intensities 
(which are of outmost importance in the modelling and forecasting of urban pluvial flooding). 

Summary of main findings from the analysis of rainfall estimates: Based on the analysis of the 
different rainfall estimates, the following main conclusions can be drawn: 

- The RG/RD bias (see Equation 2) can vary significantly from event to event (Table 3 and 
Table 4), thus the need for carrying out local and dynamic adjustment of RD rainfall 
estimates before these can be used for urban hydrological applications. 

- All adjustment methods are able of reducing RG/RD bias, generating spatial rainfall 
estimates with areal total rainfall accumulations close to those recorded by RG. 

- With regards to the spatial structure of rainfall fields, the MFB and SIN estimates appear to 
be better at preserving the spatial variability as originally captured by the RD. The BAY 
estimates show a smoother spatial structure, but still more realistic than simple BK 
interpolated fields. 
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- With regards to the ability of the different rainfall estimates to reproduce the rain rates as 
captured by RG, the performance of RD is mostly poor. There are a number of uncertainty 
sources which cause RD estimates to poorly reproduce rainfall intensities of different 
magnitudes (in comparison to the rainfall intensities captured by RG). In this respect, the 
MFB adjustment does not provide significant improvements over the original RD estimates. 
In contrast, the BAY and in particular the SIN methodologies have shown to be capable of 
improving the accuracy of the rainfall intensities throughout the whole range of magnitudes 
observed in the events under consideration.  

 

  

   

Figure 5: Scatterplots of areal average RG rain rates vs. rain rates of the different spatial rainfall estimates (i.e. 
RD (red markers), BK (blue), MFB (light blue), BAY (pink) and SIN (yellow)). Two selected storms over the 

Cranbrook catchment area: Storm 1 (top left) and Storm 2 (top right). Three selected storms over the 
Portobello catchment area: Storm 1 (bottom left), Storm 2 (bottom middle) and Storm3 (bottom right). 

4.2. HYDRAULIC OUTPUTS 

In what follows a description is first given of the measures used to evaluate the performance of the 
hydraulic outputs originating from the different rainfall inputs. Afterwards, the results obtained for 
the two case studies are presented and discussed. Since the hydraulic outputs in the two 
experimental catchments correspond to different contexts (i.e. operational context in Cranbrook and 
verification context in Portobello), these are analysed separately. However, at the end of the section 
general findings from the two case studies are summarised.  

Measures used to evaluate the performance of the hydraulic simulations resulting from the 
different rainfall inputs: In addition to the direct visual inspection of simulated vs. observed flow 
and depth hydrographs, a number of measures were employed in this study to assess the 
performance of the simulation results. These measures are: 
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- Relative error (RE) between simulated and observed peak flows and depths: the RE gives 
an estimate of how well, in terms of magnitude, the simulation results can reproduce the 
true peak flows and depths, as recorded by the gauges. RE is estimated as follows: 

    (           )      ⁄  Equation 3 

where       and       represent, respectively, the maximum observed and simulated flows 
or depths. Negative RE values indicate that the model underestimates the observed peak 
flow/depth, while positive values indicate overestimation of the peaks. Moreover, the closer 
RE is to zero, the better.  

- Correlation coefficient (R): R is a measure of the strength and direction of the linear 
relationship between two variables. It is estimated as follows at each gauging station: 

   
∑ (    ̅)(    ̅) 

   

√∑ (    ̅)  
   √∑ (    ̅)  

   

 Equation 4 

where    and    are observed and simulated flows/depths at time step  , and  ̅ and  ̅ 

correspond to the mean observed and simulated values at the given gauging station. The 
range of R lies between -1 and +1 inclusive, where -1 is total negative correlation, 0 is no 
correlation and +1 is total positive correlation. In practical terms in the context of this study, 
R provides a measurement of the similarity of the simulated and observed hydrograph 
patterns (positive values should therefore be expected, with values closer to +1 indicating 
more similarity in the patterns). It is worth noticing that a model which systematically over- 
or under predicts can still result in good R scores, as long as the patterns of the simulations 
and observations are similar. 

- Nash-Sutcliffe efficiency coefficient (NSE): The NSE coefficient (Nash & Sutcliffe, 1970) is a 
widely used measure to quantify the overall predictive ability of a hydrological model. At 
each gauging station, NSE is estimated as one minus the sum of the absolute squared 
differences between the predicted and observed values normalised by the variance of the 
observed values during the period under investigation: 

       
∑ (     )

  
   

∑ (    ̅)  
   

 Equation 5 

NSE can range from    to 1, with 1 being a perfect fit. The normalisation by the variance of 
the observations leads to higher NSE values at highly dynamic points of the system (where 
the variability in the observations is high). Therefore, NSE values at different locations 
should only be compared while carefully considering the particular characteristics of each 
site. Moreover, similar to R, NSE is not very sensitive to systematic model over- or under 
prediction (Krause et al., 2005). 

As can be seen, the assessment measures used in this study cover different aspects of the 
performance of the simulations and each of them has advantages and disadvantages; as such, they 
need to be analysed jointly. 

Hydraulic outputs for the Cranbrook catchment: For this catchment only depth records from one 
gauge were available for the storm events under consideration. Figure 6 presents hydrographs of 
observed and simulated depths (with the different rainfall inputs) for the two storm events at this 
gauging station, which is located in the mid-stream part of the catchment. In addition, a summary of 
the performance measures for the simulation results associated to the different rainfall estimates is 
presented in Table 5. 
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Figure 6: Comparison of observed and simulated flow depth hydrographs for different rainfall inputs at the 

Valentine sewer (Point A in Figure 2(b)) in the Cranbrook catchment: (left) Storm 1 and (right) Storm 2.    

Table 5: Performance measures for the simulated flow depths resulting from feeding different rainfall inputs 

into the hydraulic model of the Cranbrook catchment. The measures were estimated based on the simulation 

results and on the flow depth measurements at the Valentine sewer (PointA in Figure 2(b)). 

Performance Measures/ 
Rainfall estimates 

RG RD BK MFB BAY SIN 

 Storm 1 

RE in peak depth 0.111 -0.481 0.125 -0.176 0.073 0.004 

R – depth 0.874 0.618 0.881 0.814 0.913 0.902 

NSE – depth  0.283 0.315 0.452 0.696 0.772 0.800 

 Storm 2 

RE in peak depth 0.126 -0.538 0.061 -0.130 0.072 0.098 

R – depth 0.838 0.751 0.808 0.813 0.834 0.857 

NSE – depth 0.522 0.492 0.680 0.658 0.711 0.676 

 

The most prominent feature which can be observed in the hydrographs and in Table 5 is the large 
underestimation of flow depths (especially peak depths) resulting from the RD rainfall input; this is 
further corroborated by the RE values (Table 5), which are largest for the RD inputs, as compared to 
other rainfall inputs. Nonetheless, the overall pattern of the RD-based hydrographs is in good 
agreement with that of the observations; in fact, the associated R and NSE associated to the RD 
outputs are acceptable. The large underestimation in flow depths can be explained by the large 
underestimation in rainfall depths and intensities exhibited by the RD rainfall estimates (see Table 3 
and Figure 5). The good pattern indicates that in spite of the inaccuracy, RD estimates can well 
capture the spatial and temporal structure of rainfall fields.  

As compared to the RD hydraulic outputs, MFB provides a considerable improvement, but it still 
cannot capture well the largest depth peaks observed in the two storm events. This is consistent 
with the rainfall statistics presented in Table 3 and Figure 5, where the MFB adjusted rainfall fields 
were found to underestimate rainfall peak intensities. This indicates that 1) a spatially-uniform 1-hr 
(sample bias) ratio is insufficient to satisfactorily characterise the spatial and temporal variability of 
the RG/RD biases, and 2) it is critical to capture the rainfall peak intensities in urban-scale modelling, 
in which the small scale dynamics of rainfall have a significant effect on the associated hydraulic 
outputs.  

As would be expected, the depth hydrographs of the RG and BK (interpolated RG) are very similar. 
But, interestingly, in some cases the BK output is slightly closer to the observations as compared to 
the RG output; in fact, in terms of NSE the BK associated outputs clearly a show better performance 
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than the RG outputs. This suggests that taking into account the spatial variability in the rainfall input 
(even in a simple way) could be beneficial for modelling purposes.  

Lastly, the BAY and SIN outputs outperform all other simulation results, including the RG ones, both 
in terms of magnitude and pattern; this can be noticed visually (Figure 6), as well as from the 
performance measures (Table 5). In this catchment and for the storm events under consideration no 
large differences are observed between the BAY and SIN hydraulic outputs; however, there is a fact 
worth noticing. In Storm 1, the peak rainfall intensities of the BAY and SIN estimates are almost the 
same (Table 3), but some difference can be observed in their associated peak flow depths. In 
contrast, in Storm 2 the SIN estimates show a much higher rainfall peak intensity than the BAY (Table 
3), but the difference in the associated flow depth outputs is very small. In both storm events the 
main difference between the BAY and SIN estimates was their Max/min ratios (i.e. their spatial 
variability). Albeit at a small scale, these results suggest that the spatial variability of rainfall fields 
does have an effect on the subsequent hydraulic outputs (although the effect of it is smaller than the 
effect of the inaccuracy or bias). This initial conclusion is further confirmed by the results obtained 
for the Portobello catchment, which are presented next. 

Hydraulic outputs for the Portobello catchment: Due to space constraints and given the size of the 
Portobello catchment and the number of gauging stations for which data are available, only the 
results for Storm 1 are presented and discussed in detail. At the end of this section the results 
obtained for Storms 2 and 3 are briefly discussed and general conclusions are formulated. Results 
from Storm 1 were chosen as it is the most intense storm analysed for this catchment and, as such, it 
is the most relevant from an urban pluvial flood modelling perspective.  

In Figure 7 a selection is presented of three observed vs. simulated flow and depth hydrographs 
from different locations within the catchment (respectively in the up-, mid- and downstream parts of 
the catchment) for Storm 1. In addition, in Figure 8 boxplots are presented which show the 
distribution of the performance measures for the simulated depths and flows at the different 
gauging stations for Storm 1.  

From Figure 7 and Figure 8 it can be seen that, even though the cumulative RG/RD rainfall bias is 
very small for Storm 1 and RD accumulations are even slightly higher than RG ones (Table 4) , the RD 
associated hydraulic outputs consistently underestimate flow and depth peaks, with the degree of 
underestimation changing from location to location and possibly increasing in the direction of flows 
within the catchment (i.e. larger underestimations are observed in gauging locations further 
downstream, as compared to upstream locations). The underestimation in hydraulic outputs in spite 
of the small cumulative RG/RD bias can be explained by the fact that the RD estimates cannot well 
reproduce high rainfall rates (Figure 5). This suggests that not only is it important to get the areal 
total rainfall accumulations right, but getting the peak rainfall intensities correctly is also of outmost 
importance in order to appropriately reproduce the dynamic behaviour of the hydrological system 
and, in particular, the flow and depth peaks.  

Similar to the results of the Cranbrook catchment, the MFB adjustment was found to provide some 
improvement over the original RD estimates; however, it is still insufficient to effectively reproduce 
peak rainfall intensities (Figure 5) and the associated flow and depth peaks (Figure 7). This confirms 
the fact that more dynamic adjustment radar rainfall adjustment methods which can better account 
for the spatial variability in the rainfall fields are required for urban-scales applications (rather than 
simple mean-field bias adjustments).  

In general and as would be expected, the hydraulic outputs obtained with the BK interpolated 
estimates are very similar to the RG ones, with BK outputs sometimes performing better than the 
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original RG ones. A striking difference between BK and RG hydraulic outputs and which is worth 
analysing can be observed in the hydrographs of gauging station 23 (Figure 7(middle)): it can be seen 
that the RG outputs largely overestimate the observed peak depth, while the simply interpolated BK 
rainfall input already leads to much more sound hydraulic results which are in better agreement 
with the observations. This confirms that accounting for the spatial variability of rainfall fields, even 
through simple kriging interpolation, could lead to significant benefits in the modelling.   

The BAY and SIN outputs appear to be similar to the BK ones (and better than the original RD 
outputs), with the former (i.e. BAY and SIN) showing slightly more dynamic and realistic flow and 
depth patterns and with the SIN outputs performing better overall in terms of effectively 
reproducing peak depths and flows. The better performance of the SIN hydraulic outputs in this 
respect is clearly illustrated by the RE boxplots (Figure 8), where the median of the SIN associated RE 
for peak depths and flows is closer to zero and the dispersion of the results is smaller as compared 
to that of other hydraulic outputs, including the RG ones. An interesting example which also 
illustrates the potential benefits of the SIN method in terms of better capturing storm extremes can 
be found in gauging station 1: at this location the SIN methodology is the only one capable of 
generating a higher flow depth peak which is in better agreement with the observations (Figure 7 
(top, left)).  

From the results of Storm 1 it can be concluded that all adjustment methods can improve the 
applicability of the original RD rainfall estimates to urban hydrological applications, although the 
degree of improvement provided by each adjustment method is different. Overall, the BAY and SIN 
rainfall estimates lead to significantly better simulation results than the MFB adjusted estimates, 
with the SIN estimates performing particularly well at reproducing peak depths and flows.  

In general, the results obtained for Storm 3 are in good agreement with those obtained for Storm 1. 
However, the results of Storm 2 are somehow different: in this event the RD rainfall accumulations 
were larger than the RG ones (RG/RD bias < 1) and the RD peak rainfall intensity was very similar to 
the RG one (though this was a mild storm event with maximum observed rainfall rates in general 
low). This led to unusual results in which at many gauging stations the RD estimates resulted in 
better hydraulic outputs (i.e. closer to the observations) than the original RG ones. For this event the 
benefits of the merged rainfall estimates as compared to the original RD estimates in terms of 
hydraulic outputs are not evident (some improvements are achieved in NSE, but these are rather 
minor). Nonetheless, in this as well as in the other storms, there are many sources of uncertainty 
affecting hydraulic outputs and it is difficult to separate the effect of rainfall inputs from that of the 
model structure, model parameters and even from errors in flow measurements.  

While the results obtained for the Portobello catchment are promising and the merged rainfall 
inputs show an overall improvement over the original RD estimates, the real benefits of the merged 
products in a verification context are likely to become more evident once the hydraulic model is 
re-verified: when this is done, the modeller will be able of analysing which rainfall product appears 
to be more 'logical/consistent' given the recorded depths and flows and the physical characteristics 
of the catchment and of the sewer system. Having available a range of rainfall estimates with better 
spatial structure, in addition to the original RG estimates, could be a valuable resource in the 
verification process which could lead to improved model verification. Moreover, the analysis 
throughout the verification process would also provide valuable insights for further improving the 
adjustment methods. 

In addition and as already illustrated by the results obtained for the Cranbrook catchment, the 
benefits of the mergering are likely to become more evident in operational conditions, when storms 
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outside of the verification period are analysed and when data from fewer RG locations is available  
(when this is the case, RD becomes a necessary source of data). 

 
Figure 7: Comparisons of observed and simulated flow depth (left) and flow rate (right) hydrographs of 

Portobello’s Storm 1 at three gauge stations selected from different part of the catchment (the points FM1, 
FM8 and FM23 in Figure 3(b)): gauge 1 (top), gauge 8 (middle) and gauge 23 (bottom). 

 
Figure 8: Boxplots of RE (left), NSE (middle) and R (right) for flow depths and rates simulated using different 

rainfall inputs for Portobello’s Storm 1. The shaded areas in the NSE boxplots correspond to the region of 
positive NSE values (0 < NSE <1). 
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Summary of main findings from the analysis of hydraulic outputs: Based on the analysis of the 
hydraulic outputs for the two experimental catchments, the following main conclusions can be 
drawn: 

- In general, all adjustment methods showed their ability to improve the applicability of the 
original RD rainfall estimates to urban hydrological applications, although the degree of 
improvement provided by each adjustment method is different.  

- The MFB adjustment appears to be insufficient for satisfactorily correcting the errors in RD 
estimates and this is evident in the associated hydraulic outputs, which fail to properly 
reproduce peak depths and flows. This suggests that more dynamic and spatially varying 
adjustment methods are required for urban hydrological applications. 

- Overall, the BAY and SIN rainfall estimates lead to significantly better simulation results than 
the MFB adjusted estimates and the original RD estimates, with the SIN estimates 
performing particularly well at reproducing peak depths and flows. 

- Although the BK estimates do not entail any adjustment and correspond to a simple 
interpolation of the point RG estimates, they showed to lead to improvements in hydraulic 
outputs as compared to using RG point estimats as input to models. This demonstrates the 
benefits of accounting for the spatial variability of rainfall fields, even if it is in a simple way. 

- The benefits of using merged rainfall estimates as input to urban drainage models are clearly 
evident in an operational context, such as the one analysed in the Cranbrook catchment. In 
this case, the BAY and SIN merged estimates led to simulation results even better than those 
obtained when using point RG estimates as input. 

- In a verification context (i.e. Portobello catchment), the merged estimates also performed in 
general better than original RD estimates, but the real benefit of the merged products is 
likely to become more evident when the models are re-verified. It is expected that having 
available merged rainfall estimates with better accuracy and spatial description of rainfall 
fields could lead to improved model verification (as compared to the verification that can be 
achieved when using solely RG or RD data as input). 

 

5. GENERAL CONCLUSIONS AND OUTLOOK 

On the whole, the three adjustment techniques tested in this study (i.e. Mean-field Bias (MFB) 
adjustment, Bayesian merging (BAY) and singularity-sensitive Bayesian (SIN)) proved to improve the 
applicability of radar rainfall estimates to urban hydrological applications. In terms of rainfall 
estimates, all adjustment methods led to areal average accumulations close to those recorded by 
raingauges, but only the Bayesian methods, especially the singularity-sensitive one, were capable of 
effectively reproducing high rainfall rates, which are the ones usually poorly captured by radar and 
which are of outmost importance in order to properly reproduce flow peaks in the drainage system. 
Accordingly, in terms of hydraulic outputs, all merged rainfall products in general led to better 
results than the original radar (Nimrod) estimates, but the Bayesian-based methods, in particular the 
SIN one, led to significantly better reproduction of the systems’ dynamics as compared to the MFB 
adjusted estimates. In some cases, particularly when storms events different from those used in the 
model verification are analysed, the BAY and SIN merged estimates led to better hydraulic results 
than the original point RG estimates.  

While the results are encouraging, further testing is necessary in order to better assess the benefits 
of the merging methods, identify their shortcomings and improve them accordingly. Particular 
aspects which will soon be investigated are: (i) the possibility of using merged rainfall estimates for 
model verification purposes; (ii) the impact of the density of raingauges on the quality of the 
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different merged rainfall estimates; (iii) the sensitivity of the SIN methodology to the ‘degree of 
singularity’ which is extracted from the original radar rainfall field and applied back afterwards. 
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