Moment based methods have produced efficient multiscale quantization
algorithms for solving singular perturbation/strong coupling problems. One of
these, the Eigenvalue Moment Method (EMM), developed by Handy et al (Phys. Rev.
Lett.{\bf 55}, 931 (1985); ibid, {\bf 60}, 253 (1988b)), generates converging
lower and upper bounds to a specific discrete state energy, once the signature
property of the associated wavefunction is known. This method is particularly
effective for multidimensional, bosonic ground state problems, since the
corresponding wavefunction must be of uniform signature, and can be taken to be
positive. Despite this, the vast majority of problems studied have been on
unbounded domains. The important problem of an electron in an infinite quantum
lens potential defines a challenging extension of EMM to systems defined on a
compact domain. We investigate this here, and introduce novel modifications to
the conventional EMM formalism that facilitate its adaptability to the required
boundary conditions.Comment: Submitted to J. Phys.