research

Improving the applicability of radar rainfall estimates for urban pluvial flood modelling and forecasting

Abstract

This work explores the possibility of improving the applicability of radar rainfall estimates (whose accuracy is generally insufficient) to the verification and operation of urban storm-water drainage models by employing a number of local gauge-based radar rainfall adjustment techniques. The adjustment techniques tested in this work include a simple mean-field bias (MFB) adjustment, as well as a more complex Bayesian radar-raingauge data merging method which aims at better preserving the spatial structure of rainfall fields. In addition, a novel technique (namely, local singularity analysis) is introduced and shown to improve the Bayesian method by better capturing and reproducing storm patterns and peaks. Two urban catchments were used as case studies in this work: the Cranbrook catchment (9 km2) in North-East London, and the Portobello catchment (53 km2) in the East of Edinburgh. In the former, the potential benefits of gauge-based adjusted radar rainfall estimates in an operational context were analysed, whereas in the latter the potential benefits of adjusted estimates for model verification purposes were explored. Different rainfall inputs, including raingauge, original radar and the aforementioned merged estimates were fed into the urban drainage models of the two catchments. The hydraulic outputs were compared against available flow and depth records. On the whole, the tested adjustment techniques proved to improve the applicability of radar rainfall estimates to urban hydrological applications, with the Bayesian-based methods, in particular the singularity sensitive one, providing more realistic and accurate rainfall fields which result in better reproduction of the urban drainage system’s dynamics. Further testing is still necessary in order to better assess the benefits of these adjustment methods, identify their shortcomings and improve them accordingly

    Similar works