3 research outputs found

    Determinación del destino prospectivo de las paredes del cono y el significado de la proliferación y apoptosis del miocardio: estudio experimental en embrión de pollo

    Get PDF
    It is known that the initially undivided Conus, is separated by the endocardial crest into two conducts (anterior Conus and posterior Conus). Classically it has been mentioned that both the anterior and posterior Conus are involved in the embryogenesis of the outflow tract of the right and left ventricles respectively. At the same time, it has been mentioned that the main cellular process responsible of the normal development of the ventricular outflow tracts is the "shortening” by apoptosis of the Conus and the Truncus. By in vivo labeling of the chick embryo heart it was discovered that the “anterior conus” becomes the right ventricle outflow (RVOT). In contrast, there is no experimental evidence that directly relates to the “posterior conus” with the development of the left ventricle outflow (LVOT). Based on these facts, the objective of this work was to determine by means of in vivo labeling of chicken embryo heart the prospective fate of the walls of the Conus (right, left, dorsal and ventral), from the Stage 22HH up to their anatomical manifestation in the mature heart (Stage 30-36HH). It was also established the spatio-temporal pattern of apoptotic and proliferative myocytes during this process. To this purpose embryonic chicken hearts (stage-22HH) were labeled in ovo with Indian ink/gelatin in the Conus- Trunk transition and the boundary between the Conus and developing ventricle, separately at the right, left, dorsal and ventral walls. The eggs were re-incubated to obtain embryos at stages 24, 26, 28, 30, 32HH, 34HH and 36HH. The hearts were photographed in ovo (22HH) and once fixed at the end of experiment. To determine if the length of the Conus decreases or increases a morphometric analysis was carried out, by measuring the distance between the marks at the beginning (stage 22HH) and at the end of the experiment (stage 30 and 36HH). To detect apoptosis, samples were processed with LTR and to determine proliferation the technique of PCNA was used. In addition, at least three hearts of each stage were selected to perform histological studies. On the basis of the results of the in vivo labeling of the Conal wall it was designed a fate map in which it was determined that all the Conal walls become placed on the ventral wall heart and the marks were found exclusively in cardiac structures of the right ventricle, the most noteworthy were 1. The anterior free wall and the left wall of the RVOT. 2. The right portion of the base of the heart and 4. The superior portion of the acute edge of the heart. By histology it was determined that the Conus initially tubular, loses continuity in its posterior left wall, at the same time the Conal sleeve rotate toward a ventro-lateral position and become a slider structure. Together these results deny the existence of the “posterior Conus”. The morphometric analysis indicates that the cephalo-caudal dimensions of the Conus increase during development therefore it does not suffer from shortening as has been classically mentioned. Apoptosis was observed especially on the right and left walls and comes on gradually from stadium 24HH, rise among the stages 26 to 32HH. These findings are not consistent with the concept of shortening of the outflow tract of embryonic, rather indicate that apoptosis is involved in fine remolding undermining the lateral walls of the Conus during its transformation from a tubular structure on a slide. With respect to the pattern of proliferative myocytes, specifically in the Conus, the results indicate a differential growth particularly in the right portion.Clásicamente se conoce que los conductos anterior y posterior de la región proximal del tracto de salida embrionario o “Cono” participan en la embriogénesis del tracto de salida del ventrículo derecho (TSVD) e izquierdo (TSVI) respectivamente, mencionado como el proceso morfogenético fundamental “acortamiento” por apoptosis. Por medio de marcaje en vivo en el corazón de embrión de pollo se ha descrito que el conducto anterior se transforma en el TSVD. Sin embargo, no existe evidencia experimental que relacione directamente al conducto posterior del Cono con el desarrollo del TSVI. Con base en estos hechos, el objetivo de este trabajo fue determinar mediante marcaje in vivo del corazón de embrión de pollo, el destino prospectivo de las paredes del cono (derecha, izquierda, dorsal y ventral), desde el estadio 22HH hasta su manifestación anatómica en el corazón maduro. También se estableció el patrón espacio temporal de miocitos apoptóticos y cíclicos durante este proceso. Para lograr este objetivo, corazones embrionarios de pollo (estadio-22HH) se marcaron in ovo con tinta china/gelatina en los límites Cono-Tronco y Cono- ventricular sobre las paredes derecha, izquierda, dorsal y ventral por separado. Los embriones se re-incubaron para rastrear las marcas hasta los estadios 24, 26, 28, 30, 32, 34 y 36HH. Los corazones se fotografiaron in-ovo (22HH) y al final de experimento, después de fijarlos. Para determinar si el Cono disminuye o incrementa su longitud se llevó a cabo un análisis morfométrico, midiendo la distancia entre las marcas al inicio (estadio 22HH) y al final del experimento (estadio 30 y 36HH). Para detectar apoptosis las muestras se procesaron con LTR y para determinar Roberto Lazzarini vii proliferación se empleó la técnica de PCNA. Además, al menos tres corazones de cada etapa se seleccionaron para hacer un estudio histológico. Con base en los resultados del rastreo de las marcas colocadas en las distintas paredes del Cono se logró construir un mapa de destino en el que se determinó que todas las paredes conales giran para colocarse en la pared ventral cardiaca, las marcas se encontraron exclusivamente en estructuras cardiacas del ventrículo derecho entre las que destacan 1. Pared libre anterior 2. Pared izquierda del TSVD, 3. Porción derecha de la base cardiaca y 4. Porción superior del borde agudo cardiaco. Por medio de histología se determinó que el Cono inicialmente tubular, pierde continuidad en su pared dorso-izquierda y sus distintas paredes rotan hacia una posición ventro-lateral. Estos resultados en conjunto niegan la existencia del supuesto Cono posterior. Los resultados del análisis morfométrico indican que el Cono no sufre acortamiento en sus dimensiones céfalo-caudales. Respecto al patrón apoptótico en el Cono se encontró que no fue uniforme ni en el espacio ni en el tiempo. La apoptosis se manifestó especialmente en las paredes derecha e izquierda y aparece gradualmente a partir del estadio 24HH, incrementándose entre los estadios 26 a 32HH. Estos hallazgos no son congruentes con el concepto de acortamiento del tracto de salida embrionario, más bien indican que la apoptosis participa en finas remodelaciones, socavando las paredes laterales del Cono, durante su transformación de una estructura tubular en una lamina. Respecto al patrón de miocitos en proliferación específicamente en el Cono, los resultados indican un crecimiento diferencial dominante en la porción derecha

    Estudio de los cambios topológicos y de los procesos celulares del miocardio del conus durante la septación cardiaca

    Get PDF
    La información sobre la génesis de los tractos de salida ventriculares es un tema controversial. Actualmente se considera que los tractos de salida ventriculares se originan de un primordio embrionario único (constituido histológicamente por miocardio, denominado conus), por un proceso de reducción longitudinal y septación. La reducción del conus se estimó hasta en 2/3 partes de las dimensiones originales y la septación ocurriría justo en el centro del lumen conal, originando de esta manera dos conductos tubulares transitorios: el cono-pulmonar y el cono-aórtico, ambos conductos posteriormente se transformarían en el tracto de salida de los ventrículos correspondientes. Sin embargo, las características histológicas de la continuidad fibrosa mitroaórtica, un componente del tracto de salida del ventrículo izquierdo del corazón maduro, no concuerda con las características de tejido tipo miocardio del supuesto cono-aórtico. Para responder a esa incógnita se han propuesto varios procesos celulares que expliquen la desaparición del miocardio del cono-aórtico. Las propuestas incluyeron: reabsorción del miocardio, desdiferenciación hacia tejido fibroso, y apoptosis del miocardio. Sin embargo estudios experimentales sugieren que la reducción y correcta alineación del conotronco con las grandes arterias, se debe a un proceso de apoptosis masiva del miocardio del conus, troncus o ambos. Además recientemente se ha desarrollado el concepto de 1º y 2º campos cardiacos. El primer campo, se representa por las células que forman el corazón en etapa de ―tubo recto‖ y se propone que desarrollará al ventrículo izquierdo y al segmento atrial. Posteriormente se adicionan nuevas poblaciones celulares desde un 2º campo, causando la aparición del conus y el troncus. Se menciona que el destino del miocardio del conotronco será el miocardio del ventrículo derecho. Dejando sin sustento la reducción longitudinal por apoptosis masiva del conotronco. Por lo anterior nos propusimos investigar los cambios topológicos del miocardio del conus y su relación en el desarrollo del canal atrioventricular durante la septación cardiaca, para tratar de proponer un modelo de desarrollo cardiaco que explique la formación de los tractos de salida ventriculares. Utilizamos técnicas de marcaje selectivo de tinta china/carbón en corazones en desarrollo del embrión de pollo que por sus características de manipulación in ovo es posible hacer estudios longitudinales. Marcamos los límites anatómicos del miocardio del conus, en sus paredes: ventral, dorsal, derecha e izquierda, después rastreamos el destino de todo el miocardio conal en el corazón maduro. También marcamos el cojín ventrosuperior del canal atrioventricular. Estudiamos el patrón de distribución de células en apoptosis. Por tinciones de rutina, analizamos los cambios topológicos del miocardio, del tejido mesenquimal, así como del lumen del conus y del canal atrioventricular. Posteriormente hicimos inmunodetección de proteínas que participan en las uniones ocluyentes, adherentes y comunicantes entre el miocardio conal. Encontramos que el conus termina de integrarse al corazón en estadio 22HH, es una estructura derecha y el canal atrioventricular es izquierdo. El miocardio del conus, tenía estructura tubular similar a la letra ―O‖, en estadios 24HH-28HH, el miocardio perdió continuidad en una región dorso-izquierda, los bordes libres de miocardio, se fueron desplazando en sentidos opuestos hasta formar una estructura similar a la letra ―U‖, los extremos libres siguieron desplazándose en dirección ventral, hasta finalmente transformarse en gran parte de la pared libre del ventrículo derecho. Por otro lado los cojines ventrosuperior y dorsoinferior del canal atrioventricular se acercaron paulatinamente (22HH-24HH), hasta fusionarse para formar el tabique medio del canal atrioventricular (26HH), el tejido mesenquimal adyacente a la zona de apertura del miocardio conal y el cojín ventrosuperior del canal atrioventricular formaron un continuo en la zona de apertura impidiendo el corto circuito cardiaco. Las marcas plásticas colocadas en el cojín ventrosuperior, se encontraron en la valva anteroseptal de la válvula atrioventricular izquierda, en la continuidad fibrosa mitroaórtica y en una porción lisa y paramedial del tabique interventricular; lo que siguiere que los cojines del canal atrioventricular se transformaron en el tracto de salida del ventrículo izquierdo y en gran parte del esqueleto fibroso del corazón. Los procedimientos de inmunodetección, focalizados en la zona de apertura del conus sugieren que solo las uniones comunicantes, dejan de expresarse conforme el miocardio del conus de la pared dorsoizquierda pierde continuidad tubular. Es probable que la perdida de adhesión celular del miocardio conal sea mediada por la fosforilación de βCatenina en Thr393 . Con esta información, proponemos que los tractos de salida ventriculares se originan desde primordios embrionarios distintos: el tracto de salida del ventrículo derecho por la transformación del conus, y el tracto de salida del ventrículo izquierdo se origina desde el tabique medio del canal atrioventricular. Estos hallazgos pueden aportar información para interpretar la etiología de las cardiopatías congénitas troncoconales, grupo de cardiopatías de mayor incidencia a nivel mundial.Information on the genesis of ventricular outflow tracts is a controversial issue. Currently, ventricular outflow tracts are considered to originate from a single embryonic primordium (histologically constituted by myocardium, called conus), by a process of longitudinal reduction and septation. The reduction of the conus was estimated up to 2/3 of the original dimensions and the septation of interruption just in the center of the conical lumen, thus originating two transient tubular ducts: the pulmonary cone and the aortic cone, both posterior conductors they would become the exit tract of the corresponding ventricles. However, the histological features of mitroaortic fibrous continuity, a component of the left ventricular outflow tract of the mature heart, do not match the characteristics of the myocardial tissue of the supposed cone-aortic. To answer this question, several mobile processes have been proposed that explain the disappearance of the myocardium from the aortic cone. The proposals included: myocardial reabsorption, dedifferentiation to fibrous tissue, and myocardial apoptosis. However, experimental studies that reduce and correct the alignment of the conotron with the great arteries, must a process of massive apoptosis of the myocardium of the conus, trunk or both. In addition, the concept of 1st and 2nd cardiac fields has recently been developed. The first field is represented by the cells that form the heart in the "straight tube" stage and is proposed to develop the left ventricle and the atrial segment. Subsequently, new cell populations are added from a 2nd field, causing the appearance of the conus and the trunk. It is mentioned that the fate of the conotron myocardium will be the right ventricular myocardium. Leaving the longitudinal reduction by massive apoptosis of the conotron without sustenance. Therefore, we set out to investigate the topological changes of the myocardium of the conus and its relationship in the development of the atrioventricular canal during cardiac septation, to try to propose a cardiac development model that explains the formation of the ventricular outflow tracts. We use selective marking techniques of Chinese ink / charcoal in developing hearts of the chicken embryo that, due to its in ovo handling characteristics, longitudinal studies are possible. We mark the anatomical limits of the conus myocardium, on its walls: ventral, dorsal, right and left, then trace the fate of the entire conal myocardium in the mature heart. We also mark the ventrosuperior cushion of the atrioventricular canal. We study the pattern of distribution of cells in apoptosis. By routine stains, we analyze the topological changes of the myocardium, mesenchymal tissue, as well as the lumen of the conus and the atrioventricular canal. Subsequently we did immunodetection of proteins that participate in occluders, adherent and communicating junctions between the conal myocardium. We found that the conus finishes integrating with the heart in stage 22HH, it is a right structure and the atrioventricular canal is left. The myocardium of the conus, had a tubular structure similar to the letter ―O‖, in stages 24HH-28HH, the myocardium lost continuity in a dorso-left region, the free myocardial edges, moved in opposite directions until forming a similar structure to the letter "U", the free ends continued to move in the ventral direction, until finally becoming a large part of the free wall of the right ventricle. On the other hand, the ventrosuperior and dorsoiniorior cushions of the atrioventricular canal gradually approached (22HH-24HH), until they merged to form the middle septum of the atrioventricular canal (26HH), the mesenchymal tissue adjacent to the opening zone of the conal myocardium and the ventrosuperior cushion of the atrioventricular canal formed a continuum in the opening zone preventing the short cardiac circuit. The plastic marks placed in the ventrosuperior cushion were found in the anteroseptal leaflet of the left atrioventricular valve, in the mitroaortic fibrous continuity and in a smooth and paramedial portion of the interventricular septum; which follows that the atrioventricular canal cushions became the left ventricular outflow tract and largely the fibrous skeleton of the heart. Immunodetection procedures, focused on the opening area of the conus, suggest that only the communicating junctions cease to express themselves as the conus myocardium of the back-left wall loses tubular continuity. The loss of cellular adhesion of the conal myocardium is likely to be mediated by the phosphorylation of β-Catenin in Thr393. With this information, we propose that ventricular outflow tracts originate from different embryonic primordia: the outflow tract of the right ventricle due to the transformation of the conus, and the outflow tract of the left ventricle originates from the middle septum of the atrioventricular canal. These findings can provide information to interpret the aetiology of congenital congenital heart disease, a group of heart diseases with the highest incidence worldwide

    GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion

    Get PDF
    International audienceGrowth differentiation factor 11 (GDF11) has been characterized as a key regulator of differentiation in cells that retain stemness features, despite some controversies in age-related studies. GDF11 has been poorly investigated in cancer, particularly in those with stemness capacity, such as hepatocellular carcinoma (HCC), one of the most aggressive cancers worldwide. Here, we focused on investigating the effects of GDF11 in liver cancer cells. GDF11 treatment significantly reduced proliferation, colony and spheroid formation in HCC cell lines. Consistently, down-regulation of CDK6, cyclin D1, cyclin A, and concomitant upregulation of p27 was observed after 24 h of treatment. Interestingly, cell viability was unchanged, but cell functionality was compromised. These effects were potentially induced by the expression of E-cadherin and occludin, as well as Snail and N-cadherin repression, in a time-dependent manner. Furthermore, GDF11 treatment for 72 h induced that cells were incapable of sustaining colony and sphere capacity in the absent of GDF11, up to 5 days, indicating that the effect of GDF11 on self-renewal capacity is not transient. Finally, in vivo invasion studies revealed a significant decrease in cell migration of hepatocellular carcinoma cells treated with GDF11 associated to a decreased proliferation judged by Ki67 staining. Data show that exogenous GDF11 displays tumor suppressor properties in HCC cells
    corecore