180 research outputs found

    Do inositol supplements enhance phosphatidylinositol supply and thus support endoplasmic reticulum function?

    Get PDF
    AbstractThis review attempts to explain why consuming extramyoinositol (Ins), an essential component of membrane phospholipids, is often beneficial for patients with conditions characterised by insulin resistance, non-alcoholic fatty liver disease and endoplasmic reticulum (ER) stress. For decades we assumed that most human diets provide an adequate Ins supply, but newer evidence suggests that increasing Ins intake ameliorates several disorders, including polycystic ovary syndrome, gestational diabetes, metabolic syndrome, poor sperm development and retinopathy of prematurity. Proposed explanations often suggest functional enhancement of minor facets of Ins Biology such as insulin signalling through putative inositol-containing ‘mediators’, but offer no explanation for this selectivity. It is more likely that eating extra Ins corrects a deficiency of an abundant Ins-containing cell constituent, probably phosphatidylinositol (PtdIns). Much of a cell’s PtdIns is in ER membranes, and an increase in ER membrane synthesis, enhancing the ER’s functional capacity, is often an important part of cell responses to ER stress. This review: (a) reinterprets historical information on Ins deficiency as describing a set of events involving a failure of cells adequately to adapt to ER stress; (b) proposes that in the conditions that respond to dietary Ins there is an overstretching of Ins reserves that limits the stressed ER’s ability to make the ‘extra’ PtdIns needed for ER membrane expansion; and (c) suggests that eating Ins supplements increases the Ins supply to Ins-deficient and ER-stressed cells, allowing them to make more PtdIns and to expand the ER membrane system and sustain ER functions.</jats:p

    Fluorescence-Guided Visualization of Soft-Tissue Sarcomas by Targeting Vascular Endothelial Growth Factor A:A Phase 1 Single-Center Clinical Trial

    Get PDF
    Resection of soft-tissue sarcoma (STS) is accompanied by a high rate of tumor-positive surgical margins (14%-34%), which potentially lead to decreased disease-free survival. Vascular endothelial growth factor A is overexpressed in malignant tumors, including STS, and can be targeted with bevacizumab-800CW during fluorescence-guided surgery for real-time tumor detection. In this phase 1 clinical trial, we determined the feasibility, safety, and optimal dose of bevacizumab-800CW for fluorescence-guided surgery in STS for in vivo and ex vivo tumor detection. Methods: Patients with a histopathologic diagnosis of STS were included. In the dose-escalation phase, patients received bevacizumab-800CW intravenously 3 d before surgery (10, 25, and 50 mg; n = 8). In the subsequent dose-expansion phase, 7 additional patients received bevacizumab800CW at the optimal dose. Fluorescence images were obtained in vivo and ex vivo during all stages of standard care. The optimal dose was determined by calculating in vivo and ex vivo tumor-to-background ratios (TBR) and correlating these results with histopathology. Results: Fifteen patients with STS completed this study. All tumors could be visualized during in vivo and ex vivo imaging. The optimal bevacizumab-800CW dose proved to be 10 mg, with a median in vivo TBR of 2.0 (+/- 0.58) and a median ex vivo TBR of 2.67 (+/- 1.6). All 7 tumor-positive margins could be observed in real time after surgical resection. Conclusion: GS using 10 mg of bevacizumab-800CW is feasible and safe for intraoperative imaging of STS, potentially allowing tumor detection and margin assessment during surgery. An additional follow-up phase 2 study is needed to confirm the diagnostic accuracy

    PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection

    Get PDF
    By engulfing potentially harmful microbes, professional phagocytes are continually at risk from intracellular pathogens. To avoid becoming infected, the host must kill pathogens in the phagosome before they can escape or establish a survival niche. Here, we analyse the role of the phosphoinositide (PI) 5-kinase PIKfyve in phagosome maturation and killing, using the amoeba and model phagocyte Dictyostelium discoideum. PIKfyve plays important but poorly understood roles in vesicular trafficking by catalysing formation of the lipids phosphatidylinositol (3,5)-bisphosphate (PI(3,5)2) and phosphatidylinositol-5-phosphate (PI(5)P). Here we show that its activity is essential during early phagosome maturation in Dictyostelium. Disruption of PIKfyve inhibited delivery of both the vacuolar V-ATPase and proteases, dramatically reducing the ability of cells to acidify newly formed phagosomes and digest their contents. Consequently, PIKfyve- cells were unable to generate an effective antimicrobial environment and efficiently kill captured bacteria. Moreover, we demonstrate that cells lacking PIKfyve are more susceptible to infection by the intracellular pathogen Legionella pneumophila. We conclude that PIKfyve-catalysed phosphoinositide production plays a crucial and general role in ensuring early phagosomal maturation, protecting host cells from diverse pathogenic microbes

    Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy

    Get PDF
    Acknowledgements The authors are grateful to Nils Lindstrom and members of the Gillingwater laboratory for advice and assistance with this study and helpful comments on the manuscript; Neil Cashman for the NSC-34 cell line; and Ji-Long Liu for the DrosophilasmnA and smnB lines. This work was supported by grants from the SMA Trust (to T.H. Gillingwater, P.J. Young, and R. Morse), BDF Newlife (to T.H. Gillingwater and S.H. Parson), the Anatomical Society (to T.H. Gillingwater and S.H. Parson), the Muscular Dystrophy Campaign (to T.H. Gillingwater), the Jennifer Trust for Spinal Muscular Atrophy (to H.R. Fuller), the Muscular Dystrophy Association (to G.E. Morris), the Vandervell Foundation (to P.J. Young), the Medical Research Council (GO82208 to I.M. Robinson), Roslin Institute Strategic Grant funding from the BBSRC (to T.M. Wishart), the BBSRC (to C.G. Becker), the Deutsche Forschungsgemeinschaft and EU FP7/2007-2013 (grant no. 2012-305121, NeurOmics, to B. Wirth), the Center for Molecular Medicine Cologne (to B. Wirth and M. Hammerschmidt), and SMA Europe (to M.M. Reissland). We would also like to acknowledge financial support to the Gillingwater lab generated through donations to the SMASHSMA campaign.Peer reviewedPublisher PD

    Screening Patients with a Family History of Colorectal Cancer

    Get PDF
    OBJECTIVES: To compare screening practices and beliefs in patients with and without a clinically important family history. DESIGN: We mailed a brief questionnaire asking about family history and a second, longer survey asking about knowledge of and beliefs about colorectal cancer to all respondents with a family history and a random sample of respondents without a family history of colorectal cancer. We reviewed electronic medical records for screening examinations and recording of family history. PARTICIPANTS: One thousand eight hundred seventy of 6,807 randomly selected patients ages 35–55 years who had been continuously enrolled in a large multispecialty group practice for at least 5 years. MEASUREMENTS: Recognition of increased risk, screening practices, and beliefs—all according to strength of family history and patient’s age. RESULTS: Nineteen percent of respondents reported a family history of colorectal cancer. In 11%, this history was strong enough to warrant screening before age 50 years. However, only 39% (95% CI 36, 42) of respondents under the age of 50 years said they had been asked about family history and only 45% of those with a strong family history of colorectal cancer had been screened appropriately. Forty-six percent of patients with a strong family history did not know that they should be screened at a younger age than average risk people. Medical records mentioned family history of colorectal cancer in 59% of patients reporting a family history. CONCLUSIONS: More efforts are needed to translate information about family history of colorectal cancer into the care of patients
    corecore