207 research outputs found

    The influence of microstructure on the fatigue crack growth rate in marine steels in the Paris Region

    Get PDF
    This paper presents a study on the effect of microstructure on the fatigue crack growth (FCG) rate in advanced S355 marine steels in the Paris Region of the da/dN versus ΔK log–log plot. The environments of study were air and seawater (SW), under constant amplitude sinewave fatigue loading. Fundamentally, three phenomena (crack tip diversion, crack front bifurcation and metal crumb formation) were observed to influence the rate of FCG. These phenomena appear to be a function of the material microstructure, environment and crack tip loading conditions. The three factors retarded the crack growth by reducing or redistributing the effective driving force at the main active crack tip. A crack path containing extensively the three phenomena was observed to offer strong resistance to FCG. In SW, the degree of the electrochemical dissolution of the microplastic zone appears to be an additional primary factor influencing FCG in the steel

    Association analysis of PRNP gene region with chronic wasting disease in Rocky Mountain elk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of cervids including white-tailed (<it>Odocoileus virginianus</it>) and mule deer (<it>Odocoileus hemionus</it>), Rocky Mountain elk (<it>Cervus elaphus nelsoni</it>), and moose (<it>Alces alces</it>). A leucine variant at position 132 (132L) in prion protein of Rocky Mountain elk confers a long incubation time with CWD, but not complete resistance. However, variants in regulatory regions outside the open reading frame of <it>PRNP </it>have been associated with varying degrees of susceptibility to prion disease in other species, and some variants have been observed in similar regions of Rocky Mountain elk <it>PRNP</it>. Thus, additional genetic variants might provide increased protection, either alone or in combination with 132L.</p> <p>Findings</p> <p>This study provided genomic sequence of all exons for <it>PRNP </it>of Rocky Mountain elk. Many functional sites in and around the <it>PRNP </it>gene region were sequenced, and this report approximately doubled (to 75) the number of known variants in this region. A haplotype-tagging approach was used to reduce the number of genetic variants required to survey this variation in the <it>PRNP </it>gene region of 559 Rocky Mountain elk. Eight haplotypes were observed with frequencies over 1.0%, and one haplotype was present at 71.2% frequency, reflecting limited genetic diversity in the <it>PRNP </it>gene region.</p> <p>Conclusions</p> <p>The presence of 132L cut odds of CWD by more than half (Odds Ratio = 0.43; P = 0.0031), which was similar to a previous report. However after accounting for 132L, no association with CWD was found for any additional variants in the <it>PRNP </it>region (P > 0.05).</p

    Defects in muscarinic receptor-coupled signal transduction in isolated parotid gland cells after in vivo irradiation: evidence for a non-DNA target of radiation

    Get PDF
    Radiation-induced dysfunction of normal tissue, an unwanted side effect of radiotherapeutic treatment of cancer, is usually considered to be caused by impaired loss of cell renewal due to sterilisation of stem cells. This implies that the onset of normal tissue damage is usually determined by tissue turnover rate. Salivary glands are a clear exception to this rule: they have slow turnover rates (>60 days), yet develop radiation-induced dysfunction within hours to days. We showed that this could not be explained by a hypersensitivity to radiation-induced apoptosis or necrosis of the differentiated cells. In fact, salivary cells are still capable of amylase secretion shortly after irradiation while at the same time water secretion seems specifically and severely impaired. Here, we demonstrate that salivary gland cells isolated after in vivo irradiation are impaired in their ability to mobilise calcium from intracellular stores (Ca2+i), the driving force for water secretion, after exposure to muscarinic acetylcholine receptor agonists. Using radioligand-receptor-binding assays it is shown that radiation caused no changes in receptor density, receptor affinity nor in receptor-G-protein coupling. However, muscarinic acetylcholine agonist-induced activation of protein kinase C alpha (PKCα), measured as translocation to the plasma membrane, was severely affected in irradiated cells. Also, the phorbol ester PMA could no longer induce PKCα translocation in irradiated cells. Our data hence indicate that irradiation specifically interferes with PKCα association with membranes, leading to impairment of intracellular signalling. To the best of our knowledge, these data for the first time suggest that, the cells' capacity to respond to a receptor agonist is impaired after irradiation

    Identifying Prototypical Components in Behaviour Using Clustering Algorithms

    Get PDF
    Quantitative analysis of animal behaviour is a requirement to understand the task solving strategies of animals and the underlying control mechanisms. The identification of repeatedly occurring behavioural components is thereby a key element of a structured quantitative description. However, the complexity of most behaviours makes the identification of such behavioural components a challenging problem. We propose an automatic and objective approach for determining and evaluating prototypical behavioural components. Behavioural prototypes are identified using clustering algorithms and finally evaluated with respect to their ability to represent the whole behavioural data set. The prototypes allow for a meaningful segmentation of behavioural sequences. We applied our clustering approach to identify prototypical movements of the head of blowflies during cruising flight. The results confirm the previously established saccadic gaze strategy by the set of prototypes being divided into either predominantly translational or rotational movements, respectively. The prototypes reveal additional details about the saccadic and intersaccadic flight sections that could not be unravelled so far. Successful application of the proposed approach to behavioural data shows its ability to automatically identify prototypical behavioural components within a large and noisy database and to evaluate these with respect to their quality and stability. Hence, this approach might be applied to a broad range of behavioural and neural data obtained from different animals and in different contexts

    Positive Association between Aspirin-Intolerant Asthma and Genetic Polymorphisms of FSIP1: a Case-Case Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aspirin-intolerant asthma (AIA), which is caused by non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, causes lung inflammation and reversal bronchi reduction, leading to difficulty in breathing. Aspirin is known to affect various parts inside human body, ranging from lung to spermatogenesis. <it>FSIP1</it>, also known as <it>HDS10</it>, is a recently discovered gene that encodes fibrous sheath interacting protein 1, and is regulated by amyloid beta precursor protein (APP). Recently, it has been reported that a peptide derived from APP is cleaved by α disintegrin and metalloproteinase 33 (<it>ADAM33</it>), which is an asthma susceptibility gene. It has also been known that the <it>FSIP1 </it>gene is expressed in airway epithelium.</p> <p>Objectives</p> <p>Aim of this study is to find out whether <it>FSIP1 </it>polymorphisms affect the onset of AIA in Korean population, since it is known that AIA is genetically affected by various genes.</p> <p>Methods</p> <p>We conducted association study between 66 single nucleotide polymorphisms (SNPs) of the <it>FSIP1 </it>gene and AIA in total of 592 Korean subjects including 163 AIA and 429 aspirin-tolerant asthma (ATA) patients. Associations between polymorphisms of <it>FSIP1 </it>and AIA were analyzed with sex, smoking status, atopy, and body mass index (BMI) as covariates.</p> <p>Results</p> <p>Initially, 18 SNPs and 4 haplotypes showed associations with AIA. However, after correcting the data for multiple testing, only one SNP showed an association with AIA (corrected <it>P</it>-value = 0.03, OR = 1.63, 95% CI = 1.23-2.16), showing increased susceptibility to AIA compared with that of ATA cases. Our findings suggest that <it>FSIP1 </it>gene might be a susceptibility gene for aspirin intolerance in asthmatics.</p> <p>Conclusion</p> <p>Although our findings did not suggest that SNPs of <it>FSIP1 </it>had an effect on the reversibility of lung function abnormalities in AIA patients, they did show significant evidence of association between the variants in <it>FSIP1 </it>and AIA occurrence among asthmatics in a Korean population.</p

    Chapter 1: Introducing systems approaches

    Get PDF
    The five approaches covered in Systems Approaches to Making Change – System Dynamics (SD) Viable Systems Model (VSM), Strategic Options Development and Analysis (SODA: with cognitive mapping), Soft Systems Methodology (SSM), and Critical Systems Heuristics (CSH) – are introduced. The rationale for their inclusion is described based on their (i) common historic emergence in dealing with complex situations of change and uncertainty, (ii) shared potential and actual constructivist use of the systems idea, and (iii) pedigree of adaptability and versatility of tools in working with other approaches to making change

    Identification of multiple integrin β1 homologs in zebrafish (Danio rerio)

    Get PDF
    BACKGROUND: Integrins comprise a large family of α,β heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single β1 gene, and the β1 subunit associates with a large number of α subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about β1 integrin sequences and functions in this organism. RESULTS: Using RT-PCR, complete coding sequences of zebrafish β1 paralogs were obtained from zebrafish embryos or adult tissues. The results show that zebrafish possess two β1 paralogs (β1–1 and β1–2) that have a high degree of identity to other vertebrate β1 subunits. In addition, a third, more divergent, β1 paralog is present (β1–3), which may have altered ligand-binding properties. Zebrafish also have other divergent β1-like transcripts, which are C-terminally truncated forms lacking the transmembrane and cytoplasmic domains. Together with β1–3 these truncated forms comprise a novel group of β1 paralogs, all of which have a mutation in the ADMIDAS cation-binding site. Phylogenetic and genomic analyses indicate that the duplication that gave rise to β1–1 and β1–2 occurred after the divergence of the tetrapod and fish lineages, while a subsequent duplication of the ancestor of β1–2 may have given rise to β1–3 and an ancestral truncated paralog. A very recent tandem duplication of the truncated β1 paralogs appears to have taken place. The different zebrafish β1 paralogs have varied patterns of temporal expression during development. β1–1 and β1–2 are ubiquitously expressed in adult tissues, whereas the other β1 paralogs generally show more restricted patterns of expression. CONCLUSION: Zebrafish have a large set of integrin β1 paralogs. β1–1 and β1–2 may share the roles of the solitary β1 subunit found in other vertebrates, whereas β1–3 and the truncated β1 paralogs may have acquired novel functions

    The Extended Cleavage Specificity of Human Thrombin

    Get PDF
    Thrombin is one of the most extensively studied of all proteases. Its central role in the coagulation cascade as well as several other areas has been thoroughly documented. Despite this, its consensus cleavage site has never been determined in detail. Here we have determined its extended substrate recognition profile using phage-display technology. The consensus recognition sequence was identified as, P2-Pro, P1-Arg, P1′-Ser/Ala/Gly/Thr, P2′-not acidic and P3′-Arg. Our analysis also identifies an important role for a P3′-arginine in thrombin substrates lacking a P2-proline. In order to study kinetics of this cooperative or additive effect we developed a system for insertion of various pre-selected cleavable sequences in a linker region between two thioredoxin molecules. Using this system we show that mutations of P2-Pro and P3′-Arg lead to an approximate 20-fold and 14-fold reduction, respectively in the rate of cleavage. Mutating both Pro and Arg results in a drop in cleavage of 200–400 times, which highlights the importance of these two positions for maximal substrate cleavage. Interestingly, no natural substrates display the obtained consensus sequence but represent sequences that show only 1–30% of the optimal cleavage rate for thrombin. This clearly indicates that maximal cleavage, excluding the help of exosite interactions, is not always desired, which may instead cause problems with dysregulated coagulation. It is likely exosite cooperativity has a central role in determining the specificity and rate of cleavage of many of these in vivo substrates. Major effects on cleavage efficiency were also observed for residues as far away as 4 amino acids from the cleavage site. Insertion of an aspartic acid in position P4 resulted in a drop in cleavage by a factor of almost 20 times
    • …
    corecore