191 research outputs found

    Glassy transition in the three-dimensional random field Ising model

    Full text link
    The high temperature phase of the three dimensional random field Ising model is studied using replica symmetry breaking framework. It is found that, above the ferromagnetic transition temperature T_f, there appears a glassy phase at intermediate temperatures T_f<T<T_b while the usual paramagnetic phase exists for T>T_b only. Correlation length at T_b is computed and found to be compatible with previous numerical results.Comment: 7 pages, LaTeX file, preprint 1014 - Rome

    Against temperature chaos in naive Thouless-Anderson-Palmer equations

    Full text link
    We study the temperature structure of the naive TAP equations by mean of a recursion algorithm. The problem of the chaos in temperature is addressed using the notion of the temperature evolution of equilibrium states. The lowest free energy states show relevant correlations with the ground state, and a careful finite size analysis indicates that these correlations are not finite size effects, ruling out the possibility of chaos in temperature even in the thermodynamic limit. The correlations of the equilibrium states with respect to the ground state are investigated. The performance of a new heuristic algorithm for the search of ground states is also discussed.Comment: 13 pages, 8 eps figures. Several minor changes. References added. Published versio

    A critical review of smaller state diplomacy

    Get PDF
    In The Peloponnesian War, Thucydides (1972: 402) highlights the effects of the general, overall weakness of smaller states vis-à-vis larger, more powerful ones in a key passage, where the Athenians remind the Melians that: “… since you know as well as we do that, as the world goes, right is only in question between equals in power. Meanwhile, the strong do what they can and the weak suffer what they must.” Concerns about the vulnerability of small, weak, isolated states have echoed throughout history: from Thucydides, through the review by Machiavelli (1985) of the risks of inviting great powers to intervene in domestic affairs, through 20th century US-led contemporary political science (Vital, 1971; Handel, 1990) and Commonwealth led scholarship (Commonwealth Secretariat, 1985). In the context of 20th century ‘Balkanization’, the small state could also prove unstable, even hostile and uncooperative, a situation tempting enough to invite the intrusion of more powerful neighbours: a combination, according to Brzezinski (1997: 123-124) of a power vacuum and a corollary power suction2: in the outcome, if the small state is ‘absorbed’, it would be its fault, and its destiny, in the grand scheme of things. In an excellent review of small states in the context of the global politics of development, Payne (2004: 623, 634) concludes that “vulnerabilities rather than opportunities are the most striking consequence of smallness”. It has been recently claimed that, since they cannot defend or represent themselves adequately, small states “lack real independence, which makes them suboptimal participants in the international system” (Hagalin, 2005: 1). There is however, a less notable and acknowledged but more extraordinary strand of argumentation that considers ‘the power of powerlessness’, and the ability of small states to exploit their smaller size in a variety of ways in order to achieve their intended, even if unlikely, policy outcomes. The pursuance of smaller state goals becomes paradoxically acceptable and achievable precisely because such smaller states do not have the power to leverage disputants or pursue their own agenda. A case in point concerns the smallest state of all, the Vatican, whose powers are both unique and ambiguous, but certainly not insignificant (The Economist, 2007). Smaller states have “punched above their weight” (e.g. Edis, 1991); and, intermittently, political scientists confront their “amazing intractability” (e.g. Suhrke, 1973: 508). Henry Kissinger (1982: 172) referred to this stance, with obvious contempt, as “the tyranny of the weak”3. This paper seeks a safe passage through these two, equally reductionist, propositions. It deliberately focuses first on a comparative case analysis of two, distinct ‘small state-big state’ contests drawn from the 1970s, seeking to infer and tease out the conditions that enable smaller ‘Lilliputian’ states (whether often or rarely) to beat their respective Goliaths. The discussion is then taken forward to examine whether similar tactics can work in relation to contemporary concerns with environmental vulnerability, with a focus on two other, small island states. Before that, the semiotics of ‘the small state’ need to be explored, since they are suggestive of the perceptions and expectations that are harboured by decision makers at home and abroad and which tend towards the self-fulfilling prophecy.peer-reviewe

    Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Big sagebrush (<it>Artemisia tridentata</it>) is one of the most widely distributed and ecologically important shrub species in western North America. This species serves as a critical habitat and food resource for many animals and invertebrates. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is a serious threat to big sagebrush ecosystem sustainability. Lack of genomic data has limited our understanding of the evolutionary history and ecological adaptation in this species. Here, we report on the sequencing of expressed sequence tags (ESTs) and detection of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers in subspecies of big sagebrush.</p> <p>Results</p> <p>cDNA of <it>A. tridentata </it>sspp. <it>tridentata </it>and <it>vaseyana </it>were normalized and sequenced using the 454 GS FLX Titanium pyrosequencing technology. Assembly of the reads resulted in 20,357 contig consensus sequences in ssp. <it>tridentata </it>and 20,250 contigs in ssp. <it>vaseyana</it>. A BLASTx search against the non-redundant (NR) protein database using 29,541 consensus sequences obtained from a combined assembly resulted in 21,436 sequences with significant blast alignments (≤ 1e<sup>-15</sup>). A total of 20,952 SNPs and 119 polymorphic SSRs were detected between the two subspecies. SNPs were validated through various methods including sequence capture. Validation of SNPs in different individuals uncovered a high level of nucleotide variation in EST sequences. EST sequences of a third, tetraploid subspecies (ssp. <it>wyomingensis</it>) obtained by Illumina sequencing were mapped to the consensus sequences of the combined 454 EST assembly. Approximately one-third of the SNPs between sspp. <it>tridentata </it>and <it>vaseyana </it>identified in the combined assembly were also polymorphic within the two geographically distant ssp. <it>wyomingensis </it>samples.</p> <p>Conclusion</p> <p>We have produced a large EST dataset for <it>Artemisia tridentata</it>, which contains a large sample of the big sagebrush leaf transcriptome. SNP mapping among the three subspecies suggest the origin of ssp. <it>wyomingensis </it>via mixed ancestry. A large number of SNP and SSR markers provide the foundation for future research to address questions in big sagebrush evolution, ecological genetics, and conservation using genomic approaches.</p

    Improving virtual screening of G protein-coupled receptors via ligand-directed modeling

    Get PDF
    G protein-coupled receptors (GPCRs) play crucial roles in cell physiology and pathophysiology. There is increasing interest in using structural information for virtual screening (VS) of libraries and for structure-based drug design to identify novel agonist or antagonist leads. However, the sparse availability of experimentally determined GPCR/ligand complex structures with diverse ligands impedes the application of structure-based drug design (SBDD) programs directed to identifying new molecules with a select pharmacology. In this study, we apply ligand-directed modeling (LDM) to available GPCR X-ray structures to improve VS performance and selectivity towards molecules of specific pharmacological profile. The described method refines a GPCR binding pocket conformation using a single known ligand for that GPCR. The LDM method is a computationally efficient, iterative workflow consisting of protein sampling and ligand docking. We developed an extensive benchmark comparing LDM-refined binding pockets to GPCR X-ray crystal structures across seven different GPCRs bound to a range of ligands of different chemotypes and pharmacological profiles. LDM-refined models showed improvement in VS performance over origin X-ray crystal structures in 21 out of 24 cases. In all cases, the LDM-refined models had superior performance in enriching for the chemotype of the refinement ligand. This likely contributes to the LDM success in all cases of inhibitor-bound to agonist-bound binding pocket refinement, a key task for GPCR SBDD programs. Indeed, agonist ligands are required for a plethora of GPCRs for therapeutic intervention, however GPCR X-ray structures are mostly restricted to their inactive inhibitor-bound state

    A new species of cosmocercoides (Nematoda; cosmocercidae) and other helminths in leptodactylus latrans (anura; leptodactylidae) from Argentina

    Get PDF
    Cosmocercoides latrans n. sp. (Cosmocercidae) from the small intestine of Leptodactylus latrans (Anura: Leptodactylidae) from Northeastern Province of Buenos Aires, Argentina is described. The new species can be distinguished from their congeners by a combination of the characters, among which stands out the number of rosette papillae, the lack of gubernaculum and the presence of lateral alae in both sexes. There are over 20 species in the genus Cosmocercoides, and Cosmocercoides latrans n. sp. represents the third species from the Neotropical realm and the second for Argentina. Additionally, seven previously known taxa are reported; Pseudoacanthocephalus cf. lutzi, Catadiscus uruguayensis, Rauschiella palmipedis, Aplectana hylambatis, Cosmocerca parva, Schrankiana sp. and Rhabdias elegans; providing literature records and information on distribution and host-parasite relationships.Fil: Draghi, Regina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Zoología Invertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Drago, Fabiana Beatriz. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Zoología Invertebrados; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Lunaschi, Lía Inés. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Zoología Invertebrados; Argentin

    Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate

    Get PDF
    Integrins have emerged as key sensory molecules that translate chemical and physical cues from the extracellular matrix (ECM) into biochemical signals that regulate cell behavior. Integrins function by clustering into adhesion plaques, but the molecular mechanisms that drive integrin clustering in response to interaction with the ECM remain unclear. To explore how deformations in the cell-ECM interface influence integrin clustering, we developed a spatial-temporal simulation that integrates the micro-mechanics of the cell, glycocalyx, and ECM with a simple chemical model of integrin activation and ligand interaction. Due to mechanical coupling, we find that integrin-ligand interactions are highly cooperative, and this cooperativity is sufficient to drive integrin clustering even in the absence of cytoskeletal crosslinking or homotypic integrin-integrin interactions. The glycocalyx largely mediates this cooperativity and hence may be a key regulator of integrin function. Remarkably, integrin clustering in the model is naturally responsive to the chemical and physical properties of the ECM, including ligand density, matrix rigidity, and the chemical affinity of ligand for receptor. Consistent with experimental observations, we find that integrin clustering is robust on rigid substrates with high ligand density, but is impaired on substrates that are highly compliant or have low ligand density. We thus demonstrate how integrins themselves could function as sensory molecules that begin sensing matrix properties even before large multi-molecular adhesion complexes are assembled

    Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    Get PDF
    Background: Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. Methods: We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. Results: WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P <0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E(-7)), and immune-related complications (e. g. Natural killer cell mediated cytotoxity, P = 3.8E(-5); B cell receptor signaling pathway, P = 7.2E(-5)). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and 34.58). Moreover, detection of differentially connected genes identified various genes previously identified to be associated with obesity in humans and rodents, e.g. CSF1R and MARC2. Conclusions: To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory genes related to obesity, confirming the complexity of obesity and its association with immune-related disorders and osteoporosis
    corecore