1,109 research outputs found
High-density geometric morphometric analysis of intraspecific cranial integration in the barred grass snake (Natrix helvetica) and green anole (Anolis carolinensis)
How do phenotypic associations intrinsic to an organism, such as developmental and mechanical processes, direct morphological evolution? Comparisons of intraspecific and clade-wide patterns of phenotypic covariation could inform how population-level trends ultimately dictate macroevolutionary changes. However, most studies have focused on analyzing integration and modularity either at macroevolutionary or intraspecific levels, without a shared analytical framework unifying these temporal scales. In this study, we investigate the intraspecific patterns of cranial integration in two squamate species: Natrix helvetica and Anolis carolinensis. We analyze their cranial integration patterns using the same high-density 3-D geometric morphometric approach used in a prior squamate-wide evolutionary study. Our results indicate that Natrix and Anolis exhibit shared intraspecific cranial integration patterns, with some differences, including a more integrated rostrum in the latter. Notably, these differences in intraspecific patterns correspond to their respective interspecific patterns in snakes and lizards, with few exceptions. These results suggest that interspecific patterns of cranial integration reflect intraspecific patterns. Hence, our study suggests that the phenotypic associations that direct morphological variation within species extend across micro- and macroevolutionary levels, bridging these two scales
A practical guide to sliding and surface semilandmarks in morphometric analyses
Advances in imaging technologies, such as computed tomography (CT) and surface scanning, have facilitated the rapid generation of large datasets of high-resolution 3D specimen reconstructions in recent years. The wealth of phenotypic information available from these datasets has the potential to inform our understanding of morphological variation and evolution. However, the ever-increasing ease of compiling 3D datasets has created an urgent need for sophisticated methods of capturing high-density shape data that reflect the biological complexity in form. Landmarks often do not take full advantage of the rich shape information available from high-resolution 3D specimen reconstructions, as they are typically restricted to sutures or processes that can be reliably identified across specimens and exclude most of the surficial morphology. The development of sliding and surface semilandmark techniques has greatly enhanced the quantification of shape, but their application to diverse datasets can be challenging, especially when dealing with the variable absence of some regions within a structure. Using comprehensive 3D datasets of crania that span the entire clades of birds, squamates and caecilians, we demonstrate methods for capturing morphology across incredibly diverse shapes. We detail many of the difficulties associated with applying semilandmarks to comparable regions across highly disparate structures, and provide solutions to some of these challenges, while considering the consequences of decisions one makes in applying these approaches. Finally, we analyse the benefits of high-density sliding semilandmark approaches over landmark-only studies for capturing shape across diverse organisms and discuss the promise of these approaches for the study of organismal form
Seesaw Neutrino Signals at the Large Hadron Collider
We discuss the scenario with gauge singlet fermions (right-handed neutrinos)
accessible at the energy of the Large Hadron Collider. The singlet fermions
generate tiny neutrino masses via the seesaw mechanism and also have sizable
couplings to the standard-model particles. We demonstrate that these two facts,
which are naively not satisfied simultaneously, are reconciled in the
five-dimensional framework in various fashions, which make the seesaw mechanism
observable. The collider signal of tri-lepton final states with transverse
missing energy is investigated for two explicit examples of the observable
seesaw, taking account of three types of neutrino mass spectrum and the
constraint from lepton flavor violation. We find by showing the significance of
signal discovery that the collider experiment has a potential to find signals
of extra dimensions and the origin of small neutrino masses.Comment: 27 pages, 4 figure
Dimensional analysis of MINMOD leads to definition of the disposition index of glucose regulation and improved simulation algorithm
BACKGROUND: Frequently Sampled Intravenous Glucose Tolerance Test (FSIVGTT) together with its mathematical model, the minimal model (MINMOD), have become important clinical tools to evaluate the metabolic control of glucose in humans. Dimensional analysis of the model is up to now not available. METHODS: A formal dimensional analysis of MINMOD was carried out and the degree of freedom of MINMOD was examined. Through re-expressing all state variable and parameters in terms of their reference scales, MINMOD was transformed into a dimensionless format. Previously defined physiological indices including insulin sensitivity, glucose effectiveness, and first and second phase insulin responses were re-examined in this new formulation. Further, the parameter estimation from FSIVGTT was implemented using both the dimensional and the dimensionless formulations of MINMOD, and the performances were compared utilizing Monte Carlo simulation as well as real human FSIVGTT data. RESULTS: The degree of freedom (DOF) of MINMOD was found to be 7. The model was maximally simplified in the dimensionless formulation that normalizes the variation in glucose and insulin during FSIVGTT. In the new formulation, the disposition index (Dl), a composite parameter known to be important in diabetes pathology, was naturally defined as one of the dimensionless parameters in the system. The numerical simulation using the dimensionless formulation led to a 1.5–5 fold gain in speed, and significantly improved accuracy and robustness in parameter estimation compared to the dimensional implementation. CONCLUSION: Dimensional analysis of MINMOD led to simplification of the model, direct identification of the important composite factors in the dynamics of glucose metabolic control, and better simulations algorithms
High-density morphometric analysis of shape and integration: the good, the bad, and the not-really-a-problem
The field of comparative morphology has entered a new phase with the rapid generation of high-resolution three-dimensional data. With freely available 3D data of thousands of species, methods for quantifying morphology that harness this rich phenotypic information are quickly emerging. Among these techniques, high-density geometric morphometric approaches provide a powerful and versatile framework to robustly characterize shape and phenotypic integration, the covariances among morphological traits. These methods are particularly useful for analyses of complex structures and across disparate taxa, which may share few landmarks of unambiguous homology. However, high-density geometric morphometrics also brings challenges, for example with statistical, but not biological, covariances imposed by placement and sliding of semilandmarks and registration methods such as Procrustes superimposition. Here, we present simulations and case studies of high-density datasets for squamates, birds, and caecilians that exemplify the promise and challenges of high-dimensional analyses of phenotypic integration and modularity. We assess: (1) the relative merits of "big" high-density geometric morphometrics data over traditional shape data; (2) the impact of Procrustes superimposition on analyses of integration and modularity; and (3) differences in patterns of integration between analyses using high-density geometric morphometrics and those using discrete landmarks. We demonstrate that for many skull regions 20-30 landmarks and/or semilandmarks are needed to accurately characterize their shape variation, and landmark-only analyses do a particularly poor job of capturing shape variation in vault and rostrum bones. Procrustes superimposition can mask modularity, especially when the number of landmarks is low and they covary in parallel directions, but this effect decreases with increasing landmark number or more biologically complex covariance patterns. Landmark-only and landmark-plus-sliding-semilandmark analyses of integration are generally congruent in overall pattern of integration, but landmark-only analyses tend to show higher integration between adjacent bones, especially when landmarks placed on the sutures between bones introduces a boundary bias. Allometry may be a stronger influence on patterns of integration in landmark-only analyses, which show stronger integration prior to removal of allometric effects compared to analyses including semilandmarks. High-density geometric morphometrics has its challenges and drawbacks, but our analyses of simulated and empirical datasets demonstrate that these potential issues are unlikely to obscure genuine biological signal. Rather, high-density geometric morphometric data exceeds traditional landmark-based methods in characterization of morphology and allow more nuanced comparisons across disparate taxa. Combined with the rapid increases in 3D data availability, high-density morphometric approaches have immense potential to propel a new class of studies of comparative morphology and phenotypic integration
Neutrino Mass and from a Mini-Seesaw
The recently proposed "mini-seesaw mechanism" combines naturally suppressed
Dirac and Majorana masses to achieve light Standard Model neutrinos via a
low-scale seesaw. A key feature of this approach is the presence of multiple
light (order GeV) sterile-neutrinos that mix with the Standard Model. In this
work we study the bounds on these light sterile-neutrinos from processes like
\mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We
show that viable parameter space exists and that, interestingly, key
observables can lie just below current experimental sensitivities. In
particular, a motivated region of parameter space predicts a value of BR(\mu
---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to
presentation, results unchanged
ER stress induced immunopathology involving complement in CADASIL: implications for therapeutics
\ua9 2023, The Author(s). Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by NOTCH3 mutations. Typical CADASIL is characterised by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small arteries. Arteriolar vascular smooth muscle cells (VSMCs) are the key target in CADASIL, but the potential mechanisms involved in their degeneration are still unclear. Focusing on cerebral microvessels in the frontal and anterior temporal lobes and the basal ganglia, we used advanced proteomic and immunohistochemical methods to explore the extent of inflammatory and immune responses in CADASIL subjects compared to similar age normal and other disease controls. There was variable loss of VSMC in medial layers of arteries in white matter as well as the cortex, that could not be distinguished whether NOTCH3 mutations were in the epidermal growth factor (EGFr) domains 1–6 or EGFr7-34. Proteomics of isolated cerebral microvessels showed alterations in several proteins, many associated with endoplasmic reticulum (ER) stress including heat shock proteins. Cerebral vessels with sparsely populated VSMCs also attracted robust accrual of perivascular microglia/macrophages in order CD45+ > CD163+ > CD68+cells, with > 60% of vessel walls exhibiting intercellular adhesion molecule-1 (ICAM-1) immunoreactivity. Functional VSMC cultures bearing the NOTCH3 Arg133Cys mutation showed increased gene expression of the pro-inflammatory cytokine interleukin 6 and ICAM-1 by 16- and 50-fold, respectively. We further found evidence for activation of the alternative pathway of complement. Immunolocalisation of complement Factor B, C3d and C5-9 terminal complex but not C1q was apparent in ~ 70% of cerebral vessels. Increased complement expression was corroborated in > 70% of cultured VSMCs bearing the Arg133Cys mutation independent of N3ECD immunoreactivity. Our observations suggest that ER stress and other cellular features associated with arteriolar VSMC damage instigate robust localized inflammatory and immune responses in CADASIL. Our study has important implications for immunomodulation approaches to counter the characteristic arteriopathy of CADASIL
Cognitive and behavioral predictors of light therapy use
Objective: Although light therapy is effective in the treatment of seasonal affective disorder (SAD) and other mood disorders, only 53-79% of individuals with SAD meet remission criteria after light therapy. Perhaps more importantly, only 12-41% of individuals with SAD continue to use the treatment even after a previous winter of successful treatment. Method: Participants completed surveys regarding (1) social, cognitive, and behavioral variables used to evaluate treatment adherence for other health-related issues, expectations and credibility of light therapy, (2) a depression symptoms scale, and (3) self-reported light therapy use. Results: Individuals age 18 or older responded (n = 40), all reporting having been diagnosed with a mood disorder for which light therapy is indicated. Social support and self-efficacy scores were predictive of light therapy use (p's<.05). Conclusion: The findings suggest that testing social support and self-efficacy in a diagnosed patient population may identify factors related to the decision to use light therapy. Treatments that impact social support and self-efficacy may improve treatment response to light therapy in SAD. © 2012 Roecklein et al
Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa
Cortical mapping of cognitive function during infancy is poorly understood in low-income countries due to the lack of transportable neuroimaging methods. We have successfully piloted functional near infrared spectroscopy (fNIRS) as a neuroimaging tool in rural Gambia. Four-to-eight month old infants watched videos of Gambian adults perform social movements, while haemodynamic responses were recorded using fNIRS. We found distinct regions of the posterior superior temporal and inferior frontal cortex that evidenced either visual-social activation or vocally selective activation (vocal > non-vocal). The patterns of selective cortical activation in Gambian infants replicated those observed within similar aged infants in the UK. These are the first reported data on the measurement of localized functional brain activity in young infants in Africa and demonstrate the potential that fNIRS offers for field-based neuroimaging research of cognitive function in resource-poor rural communities
Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa
Cortical mapping of cognitive function during infancy is poorly understood in low-income countries due to the lack of transportable neuroimaging methods. We have successfully piloted functional near infrared spectroscopy (fNIRS) as a neuroimaging tool in rural Gambia. Four-to-eight month old infants watched videos of Gambian adults perform social movements, while haemodynamic responses were recorded using fNIRS. We found distinct regions of the posterior superior temporal and inferior frontal cortex that evidenced either visual-social activation or vocally selective activation (vocal > non-vocal). The patterns of selective cortical activation in Gambian infants replicated those observed within similar aged infants in the UK. These are the first reported data on the measurement of localized functional brain activity in young infants in Africa and demonstrate the potential that fNIRS offers for field-based neuroimaging research of cognitive function in resource-poor rural communities
- …