495 research outputs found

    Tubercular tenosynovitis of extensor tendons of foot--a rare presentation of musculoskeletal tuberculosis in an infant

    Get PDF
    Tuberculosis of soft tissues as a result of spread from adjacent bone or joint is a well recognized entity. However isolated tuberculous pyomyositis, bursitis and tenosynovitis are rare, constituting about 1% of skeletal tuberculosis. Tubercular tenosynovitis commonly involves tendon sheaths of wrist and hand. Cases of tuberculous tenosynovitis of foot and ankle are rare. A rare case of tubercular tenosynovitis of extensor tendons in a one year child has been reported here with its clinical presentation, treatment and a brief review of literature.Keywords: Tuberculosis; Musculoskeletal; TenosynovitisInternet Journal of Medical Update 2012 July;7(2):45-4

    Vanishing Minors in the Neutrino Mass Matrix from Abelian Gauge Symmetries

    Full text link
    Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G_max = U(1)_(B-L) x U(1)_(L_e-L_mu) x U(1)_(L_mu-L_tau). While simple U(1) subgroups of G_max have already been discussed in the context of approximate flavor symmetries, we show how two-zero textures in the right-handed neutrino Majorana mass matrix can be enforced by the flavor symmetry, which is spontaneously broken very economically by singlet scalars. These zeros lead to two vanishing minors in the low-energy neutrino mass matrix after the seesaw mechanism. This study may provide a new testing ground for a zero-texture approach: the different classes of two-zero textures with almost identical neutrino oscillation phenomenology can in principle be distinguished by their different Z' interactions at colliders.Comment: 12 pages; Extended and clarified discussion; comments on finetuning in the textures; matches published versio

    Anti-malarial activity of Holarrhena antidysenterica and Viola canescens, plants traditionally used against malaria in the Garhwal region of north-west Himalaya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing number of multidrug-resistant <it>Plasmodium </it>strains warrants exploration of new anti-malarials. Medicinal plant research has become more important, particularly after the development of Chinese anti-malarial drug artemisnin from <it>Artemisia annua</it>. The present study shows evaluation of anti-malarial effects of two plants commonly used against malaria in the Garhwal region of north-west Himalaya, in order to discover the herbal-based medicine.</p> <p>Methods</p> <p><it>In vitro </it>anti-plasmodial sensitivity of plant extracts was assessed using schizont maturation and parasite lactate dehydrogenase (pLDH) assay. Cytotoxic activities of the examined extracts were determined on L-6 cells of rat skeletal muscle myoblast. The 4-day test for anti-malarial activity against a chloroquine sensitive <it>Plasmodium berghei </it>NK65 strain in Swiss albino mice was used for monitoring <it>in vivo </it>activity of plant extracts.</p> <p>Results</p> <p>Chloroform extract of <it>H. antidysenterica </it>(HA-2) and petroleum ether extract of <it>V. canescens </it>(VC-1) plants significantly reduced parasitaemia in <it>P. berghei </it>infected mice. The extract HA-2 showed <it>in vitro </it>anti-plasmodial activity with its IC<sub>50 </sub>value 5.5 μg/ml using pLDH assay and ED<sub>50 </sub>value 18.29 mg/kg in <it>P. berghei </it>infected Swiss albino mice. Similarly petroleum ether extract of <it>V. canescens </it>(VC-1) showed <it>in vitro </it>anti-plasmodial activity with its IC<sub>50 </sub>value 2.76 μg/ml using pLDH assay and ED<sub>50 </sub>15.8 mg/kg in <it>P. berghei </it>infected mice. The extracts coded as HA-2 at 30 mg/kg and VC-1 at 20 mg/kg exhibited parasite inhibition in mice: 73.2% and 63.0% respectively. Of these two plant extracts, petroleum ether extract of <it>V. canescens </it>was found slightly cytotoxic.</p> <p>Conclusion</p> <p>The present investigation reflects the use of these traditional medicinal plants against malaria and these plants may work as potential source in the development of variety of herbal formulations for the treatment of malaria.</p

    Low Cost Tuberculosis Vaccine Antigens in Capsules: Expression in Chloroplasts, Bio-Encapsulation, Stability and Functional Evaluation In Vitro

    Get PDF
    Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) fused with cholera toxin B-subunit (CTB) and LipY (a cell wall protein) were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential for long-term storage at room temperature. To our knowledge, this is the first report of expression of TB vaccine antigens in chloroplasts

    The role of tissue transglutaminase (TG2) in regulating the tumour progression of the mouse colon carcinoma CT26

    Get PDF
    The multifunctional enzyme tissue transglutaminase (TG2) is reported to both mediate and inhibit tumour progression. To elucidate these different roles of TG2, we established a series of stable-transfected mouse colon carcinoma CT26 cells expressing a catalytically active (wild type) and a transamidating-inactive TG2 (Cys277Ser) mutant. Comparison of the TG2-transfected cells with the empty vector control indicated no differences in cell proliferation, apoptosis and susceptibility to doxorubicin, which correlated with no detectable changes in the activation of the transcription factor NF-?B. TG2-transfected cells showed increased expression of integrin ß3, and were more adherent and less migratory on fibronectin than control cells. Direct interaction of TG2 with ß3 integrins was demonstrated by immunoprecipitation, suggesting that TG2 acts as a coreceptor for fibronectin with ß3 integrins. All cells expressed the same level of TGFß receptors I and II, but only cells transfected with active TG2 had increased levels of TGFß1 and matrix-deposited fibronectin, which could be inhibited by TG2 site-directed inhibitors. Moreover, only cells transfected with active TG2 were capable of inhibiting tumour growth when compared to the empty vector controls. We conclude that in this colon carcinoma model increased levels of active TG2 are unfavourable to tumour growth due to their role in activation of TGFß1 and increased matrix deposition, which in turn favours increased cell adhesion and a lowered migratory and invasive behaviour

    Support Vector Machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins

    Get PDF
    Background: Members of the phylum Proteobacteria are most prominent among bacteria causing plant diseases that result in a diminution of the quantity and quality of food produced by agriculture. To ameliorate these losses, there is a need to identify infections in early stages. Recent developments in next generation nucleic acid sequencing and mass spectrometry open the door to screening plants by the sequences of their macromolecules. Such an approach requires the ability to recognize the organismal origin of unknown DNA or peptide fragments. There are many ways to approach this problem but none have emerged as the best protocol. Here we attempt a systematic way to determine organismal origins of peptides by using a machine learning algorithm. The algorithm that we implement is a Support Vector Machine (SVM).Result: The amino acid compositions of proteobacterial proteins were found to be different from those of plant proteins. We developed an SVM model based on amino acid and dipeptide compositions to distinguish between a proteobacterial protein and a plant protein. The amino acid composition (AAC) based SVM model had an accuracy of 92.44% with 0.85 Matthews correlation coefficient (MCC) while the dipeptide composition (DC) based SVM model had a maximum accuracy of 94.67% and 0.89 MCC. We also developed SVM models based on a hybrid approach (AAC and DC), which gave a maximum accuracy 94.86% and a 0.90 MCC. The models were tested on unseen or untrained datasets to assess their validity.Conclusion: The results indicate that the SVM based on the AAC and DC hybrid approach can be used to distinguish proteobacterial from plant protein sequences.Peer reviewedBiochemistry and Molecular Biolog

    Reversible Modulation of Spontaneous Emission by Strain in Silicon Nanowires

    Get PDF
    We computationally study the effect of uniaxial strain in modulating the spontaneous emission of photons in silicon nanowires. Our main finding is that a one to two orders of magnitude change in spontaneous emission time occurs due to two distinct mechanisms: (A) Change in wave function symmetry, where within the direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the spontaneous photon emission to be of a slow second order process mediated by phonons. This feature uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties under any reasonable amount of strain. These results promise new applications of silicon nanowires as optoelectronic devices including a mechanism for lasing. Our results are verifiable using existing experimental techniques of applying strain to nanowires

    Bioinformatic and statistical analysis of the optic nerve head in a primate model of ocular hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nonhuman primate model of glaucomatous optic neuropathy most faithfully reproduces the human disease. We used high-density oligonucleotide arrays to investigate whole genome transcriptional changes occurring at the optic nerve head during primate experimental glaucoma.</p> <p>Results</p> <p>Laser scarification of the trabecular meshwork of cynomolgus macaques produced elevated intraocular pressure that was monitored over time and led to varying degrees of damage in different samples. The macaques were examined clinically before enucleation and the myelinated optic nerves were processed post-mortem to determine the degree of neuronal loss. Global gene expression was examined in dissected optic nerve heads with Affymetrix GeneChip microarrays. We validated a subset of differentially expressed genes using qRT-PCR, immunohistochemistry, and immuno-enriched astrocytes from healthy and glaucomatous human donors. These genes have previously defined roles in axonal outgrowth, immune response, cell motility, neuroprotection, and extracellular matrix remodeling.</p> <p>Conclusion</p> <p>Our findings show that glaucoma is associated with increased expression of genes that mediate axonal outgrowth, immune response, cell motility, neuroprotection, and ECM remodeling. These studies also reveal that, as glaucoma progresses, retinal ganglion cell axons may make a regenerative attempt to restore lost nerve cell contact.</p
    corecore