658 research outputs found

    Quality of Life, Religious/Spiritual Coping, Demoralization and Depression in Heart Failure Patients

    Get PDF
    Background: Research suggests that the heart failure (HF) population is particularly vulnerable to depression. Other factors may also affect quality of life such as religious/spiritual coping, and demoralization. Purpose: The purpose of this descriptive correlational study was to examine factors that predict health-related quality of life (HRQoL) in adults with heart failure. Specific Aims: (1) to examine level of religious/spiritual coping, spiritual distress, demoralization, depression and HRQoL among adults with heart failure; (2) to examine the relationships of religious/spiritual coping, spiritual distress demoralization, depression and selected demographic variables (age, gender, race/ethnicity and length of living with HF) with HRQoL. Methods: A cross-sectional correlation design conducted at a large regional cardiomyopathy clinic in Southern California (N=115). Participants completed a survey containing demographic questions, the Duke University Religion Index, Religious Coping Scale, the Demoralization Scale, the Beck Depression Inventory-II and the Kansas City Cardiomyopathy Questionnaire. Results: T-tests revealed significant differences for positive religious/spiritual coping t(113) = 2.72, 95, 84, p\u3c .05 by gender. Women reported lower mean HRQoL scores 58.86 (SD 26.59) than men 68.57 (SD 24.77); and used more positive religious coping 20.95 (SD 4.97) than men 18.05(SD 6.20) p\u3c .05. Correlation analysis found depression and demoralization to be positively correlated (r = .801; p\u3c.05). A significant negative relationship between depression and HRQoL (r = -.645, p\u3c.001), demoralization (r = -507; p\u3c.001) and spiritual distress (r = -.218; p\u3c.05) was found. There is a trend towards statistical significance with Hispanics 21.26 (SD 5.04) more likely to use positive religious/spiritual coping than non-Hispanic participants 17.96 (SD = 6.42, p = 0.54). Regression analysis indicate the overall model significantly predicted HRQoL R2 = 0.424, F (4,110) = 20.267, p\u3c. 001. The model found depression accounted for 42% of the variance in HRQOL. Implications: A holistic approach to managing HF patients that considers the varied human responses of stress and coping that is culturally sensitive and gender appropriate would be beneficial. Future qualitative research methods may capture the phenomenon of spiritual coping more completely. Also, use of other HF quality of life scales may find other significant factors important to patient management

    Copepod carcasses as microbial hot spots for pelagic denitrification

    Get PDF
    Copepods are exposed to a high non-predatory mortality and their decomposing carcasses act as microniches with intensified microbial activity. Sinking carcasses could thereby represent anoxic microenvironment sustaining anaerobic microbial pathways in otherwise oxic water columns. Using non-invasive O-2 imaging, we document that carcasses of Calanus finmarchicus had an anoxic interior even at fully air-saturated ambient O-2 level. The extent of anoxia gradually expanded with decreasing ambient O-2 levels. Concurrent microbial sampling showed the expression of nitrite reductase genes (nirS) in all investigated carcass samples and thereby documented the potential for microbial denitrification in carcasses. The nirS gene was occasionally expressed in live copepods, but not as consistently as in carcasses. Incubations of sinking carcasses in (15)NO3-amended seawater demonstrated denitrification, of which on average 34%+/- 17% (n=28) was sustained by nitrification. However, the activity was highly variable and was strongly dependent on the ambient O-2 levels. While denitrification was present even at air-saturation (302 mol L-1), the average carcass specific activity increased several orders of magnitude to approximate to 1 nmol d(-1) at 20% air-saturation (55 mol O-2 L-1) at an ambient temperature of 7 degrees C. Sinking carcasses of C. finmarchicus therefore represent hotspots of pelagic denitrification, but the quantitative importance as a sink for bioavailable nitrogen is strongly dependent on the ambient O-2 level. The importance of carcass associated denitrification could be highly significant in O-2 depleted environments such as Oxygen Minimum Zones (OMZ)

    Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans – How Far Have We Come?

    Get PDF
    Tanaidaceans are small peracarid crustaceans which occur in all marine habitats, over the full range of depths, and rarely into fresh waters. Yet they have no obligate dispersive phase in their life-cycle. Populations are thus inevitably isolated, and allopatric speciation and high regional diversity are inevitable; cosmopolitan distributions are considered to be unlikely or non-existent. Options for passive dispersion are discussed. Tanaidaceans appear to have first evolved in shallow waters, the region of greatest diversification of the Apseudomorpha and some tanaidomorph families, while in deeper waters the apseudomorphs have subsequently evolved two or three distinct phyletic lines. The Neotanaidomorpha has evolved separately and diversified globally in deep waters, and the Tanaidomorpha has undergone the greatest evolution, diversification and adaptation, to the point where some of the deep-water taxa are recolonizing shallow waters. Analysis of their geographic distribution shows some level of regional isolation, but suffers from inclusion of polyphyletic taxa and a general lack of data, particularly for deep waters. It is concluded that the diversity of the tanaidomorphs in deeper waters and in certain ocean regions remains to be discovered; that the smaller taxa are largely understudied; and that numerous cryptic species remain to be distinguished. Thus the number of species currently recognized is likely to be an order of magnitude too low, and globally the Tanaidacea potentially rival the Amphipoda and Isopoda in diversity

    Biomolecular characterization of 3500-year-old ancient Egyptian mummification balms from the Valley of the Kings

    Get PDF
    Ancient Egyptian mummification was practiced for nearly 4000 years as a key feature of some of the most complex mortuary practices documented in the archaeological record. Embalming, the preservation of the body and organs of the deceased for the afterlife, was a central component of the Egyptian mummification process. Here, we combine GC-MS, HT-GC-MS, and LC-MS/MS analyses to examine mummification balms excavated more than a century ago by Howard Carter from Tomb KV42 in the Valley of the Kings. Balm residues were scraped from now empty canopic jars that once contained the mummified organs of the noble lady Senetnay, dating to the 18th dynasty, ca. 1450 BCE. Our analysis revealed balms consisting of beeswax, plant oil, fats, bitumen, Pinaceae resins, a balsamic substance, and dammar or Pistacia tree resin. These are the richest, most complex balms yet identified for this early time period and they shed light on balm ingredients for which there is limited information in Egyptian textual sources. They highlight both the exceptional status of Senetnay and the myriad trade connections of the Egyptians in the 2nd millennium BCE. They further illustrate the excellent preservation possible even for organic remains long removed from their original archaeological context

    A simple intravenous glucose tolerance test for assessment of insulin sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the study was to find a simple intravenous glucose tolerance test (IVGTT) that can be used to estimate insulin sensitivity.</p> <p>Methods</p> <p>In 20 healthy volunteers aged between 18 and 51 years (mean, 28) comparisons were made between kinetic parameters derived from a 12-sample, 75-min IVGTT and the M<sub>bw </sub>(glucose uptake) obtained during a hyperinsulinemic euglycemic glucose clamp. Plasma glucose was used to calculate the volume of distribution (<it>V</it><sub>d</sub>) and the clearance (<it>CL</it>) of the injected glucose bolus. The plasma insulin response was quantified by the area under the curve (AUC<sub>ins</sub>). Uptake of glucose during the clamp was corrected for body weight (M<sub>bw</sub>).</p> <p>Results</p> <p>There was a 7-fold variation in M<sub>bw</sub>. Algorithms based on the slope of the glucose-elimination curve (<it>CL/V</it><sub>d</sub>) in combination with AUC<sub>ins </sub>obtained during the IVGTT showed statistically significant correlations with M<sub>bw</sub>, the linearity being r<sup>2 </sup>= 0.63-0.83. The best algorithms were associated with a 25-75<sup>th </sup>prediction error ranging from -10% to +10%. Sampling could be shortened to 30-40 min without loss of linearity or precision.</p> <p>Conclusion</p> <p>Simple measures of glucose and insulin kinetics during an IVGTT can predict between 2/3 and 4/5 of the insulin sensitivity.</p

    Bottom mixed layer oxygen dynamics in the Celtic Sea

    Get PDF
    The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed
    corecore