12 research outputs found

    The Transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) Male Reproductive Organs

    Get PDF
    BACKGROUND: It has been suggested that genes involved in the reproductive biology of insect disease vectors are potential targets for future alternative methods of control. Little is known about the molecular biology of reproduction in phlebotomine sand flies and there is no information available concerning genes that are expressed in male reproductive organs of Lutzomyia longipalpis, the main vector of American visceral leishmaniasis and a species complex. METHODS/PRINCIPAL FINDINGS: We generated 2678 high quality ESTs ("Expressed Sequence Tags") of L. longipalpis male reproductive organs that were grouped in 1391 non-redundant sequences (1136 singlets and 255 clusters). BLAST analysis revealed that only 57% of these sequences share similarity with a L. longipalpis female EST database. Although no more than 36% of the non-redundant sequences showed similarity to protein sequences deposited in databases, more than half of them presented the best-match hits with mosquito genes. Gene ontology analysis identified subsets of genes involved in biological processes such as protein biosynthesis and DNA replication, which are probably associated with spermatogenesis. A number of non-redundant sequences were also identified as putative male reproductive gland proteins (mRGPs), also known as male accessory gland protein genes (Acps). CONCLUSIONS: The transcriptome analysis of L. longipalpis male reproductive organs is one step further in the study of the molecular basis of the reproductive biology of this important species complex. It has allowed the identification of genes potentially involved in spermatogenesis as well as putative mRGPs sequences, which have been studied in many insect species because of their effects on female post-mating behavior and physiology and their potential role in sexual selection and speciation. These data open a number of new avenues for further research in the molecular and evolutionary reproductive biology of sand flies

    Molecular taxonomy of the two Leishmania vectors Lutzomyia umbratilis and Lutzomyia anduzei (Diptera: Psychodidae) from the Brazilian Amazon

    Get PDF
    Background: Lutzomyia umbratilis (a probable species complex) is the main vector of Leishmania guyanensis in the northern region of Brazil. Lutzomyia anduzei has been implicated as a secondary vector of this parasite. These species are closely related and exhibit high morphological similarity in the adult stage; therefore, they have been wrongly identified, both in the past and in the present. This shows the need for employing integrated taxonomy. Methods. With the aim of gathering information on the molecular taxonomy and evolutionary relationships of these two vectors, 118 sequences of 663 base pairs (barcode region of the mitochondrial DNA cytochrome oxidase I - COI) were generated from 72 L. umbratilis and 46 L. anduzei individuals captured, respectively, in six and five localities of the Brazilian Amazon. The efficiency of the barcode region to differentiate the L. umbratilis lineages I and II was also evaluated. The data were analyzed using the pairwise genetic distances matrix and the Neighbor-Joining (NJ) tree, both based on the Kimura Two Parameter (K2P) evolutionary model. Results: The analyses resulted in 67 haplotypes: 32 for L. umbratilis and 35 for L. anduzei. The mean intra-specific genetic distance was 0.008 (0.002 to 0.010 for L. umbratilis; 0.008 to 0.014 for L. anduzei), whereas the mean interspecific genetic distance was 0.044 (0.041 to 0.046), supporting the barcoding gap. Between the L. umbratilis lineages I and II, it was 0.009 to 0.010. The NJ tree analysis strongly supported monophyletic clades for both L. umbratilis and L. anduzei, whereas the L. umbratilis lineages I and II formed two poorly supported monophyletic subclades. Conclusions: The barcode region clearly separated the two species and may therefore constitute a valuable tool in the identification of the sand fly vectors of Leishmania in endemic leishmaniasis areas. However, the barcode region had not enough power to separate the two lineages of L. umbratilis, likely reflecting incipient species that have not yet reached the status of distinct species. © 2013 Scarpassa and Alencar; licensee BioMed Central Ltd

    Genetic divergence between two sympatric species of the Lutzomyia longipalpis complex in the paralytic gene, a locus associated with insecticide resistance and lovesong production

    No full text
    The sandfly Lutzomyia longipalpis s.l. is the main vector of American Visceral Leishmaniasis. L. longipalpis s.l. is a species complex but until recently the existence of cryptic sibling species among Brazilian populations was a controversial issue. A fragment of paralytic (para), a voltage dependent sodium channel gene associated with insecticide resistance and courtship song production in Drosophila, was isolated and used as a molecular marker to study the divergence between two sympatric siblings of the L. longipalpis complex from Sobral, Brazil. The results revealed para as the first single locus DNA marker presenting fixed differences between the two species in this locality. In addition, two low frequency amino-acid changes in an otherwise very conserved region of the channel were observed, raising the possibility that it might be associated with incipient resistance in this vector. To the best of our knowledge, the present study represents the first population genetics analysis of insecticide resistance genes in this important leishmaniasis vector
    corecore