4 research outputs found
Capabilities and Limitations of Tissue Size Control through Passive Mechanical Forces
Embryogenesis is an extraordinarily robust process, exhibiting the ability to control tissue size and repair patterning defects in the face of environmental and genetic perturbations. The size and shape of a developing tissue is a function of the number and size of its constituent cells as well as their geometric packing. How these cellular properties are coordinated at the tissue level to ensure developmental robustness remains a mystery; understanding this process requires studying multiple concurrent processes that make up morphogenesis, including the spatial patterning of cell fates and apoptosis, as well as cell intercalations. In this work, we develop a computational model that aims to understand aspects of the robust pattern repair mechanisms of the Drosophila embryonic epidermal tissues. Size control in this system has previously been shown to rely on the regulation of apoptosis rather than proliferation; however, to date little work has been done to understand the role of cellular mechanics in this process. We employ a vertex model of an embryonic segment to test hypotheses about the emergence of this size control. Comparing the model to previously published data across wild type and genetic perturbations, we show that passive mechanical forces suffice to explain the observed size control in the posterior (P) compartment of a segment. However, observed asymmetries in cell death frequencies across the segment are demonstrated to require patterning of cellular properties in the model. Finally, we show that distinct forms of mechanical regulation in the model may be distinguished by differences in cell shapes in the P compartment, as quantified through experimentally accessible summary statistics, as well as by the tissue recoil after laser ablation experiments
VDJdb: a curated database of T-cell receptor sequences with known antigen specificity
The ability to decode antigen specificities encapsulated in the sequences of rearranged T-cell receptor (TCR) genes is critical for our understanding of the adaptive immune system and promises significant advances in the field of translational medicine. Recent developments in high-throughput sequencing methods (immune repertoire sequencing technology, or RepSeq) and single-cell RNA sequencing technology have allowed us to obtain huge numbers of TCR sequences from donor samples and link them to T-cell phenotypes. However, our ability to annotate these TCR sequences still lags behind, owing to the enormous diversity of the TCR repertoire and the scarcity of available data on T-cell specificities. In this paper, we present VDJdb, a database that stores and aggregates the results of published T-cell specificity assays and provides a universal platform that couples antigen specificities with TCR sequences. We demonstrate that VDJdb is a versatile instrument for the annotation of TCR repertoire data, enabling a concatenated view of antigen-specific TCR sequence motifs. VDJdb can be accessed at https://vdjdb.cdr3.net and https://github.com/antigenomics/vdjdb-db
The Antimicrobial Peptide hLF1-11 Drives Monocyte-Dendritic Cell Differentiation toward Dendritic Cells That Promote Antifungal Responses and Enhance Th17 Polarization
The hLF1-11 peptide comprising the first 11 N-terminal residues of human lactoferrin exerts antimicrobial activity in vivo, enhances the inflammatory response of monocytes and directs monocyte-macrophage differentiation toward cells with enhanced antimicrobial properties. In this study, we investigated the effects of hLF1-11 on human monocyte-dendritic cell (DC) differentiation and subsequent T cell activation. Results revealed that - compared to control (peptide-incubated) DCs - hLF1-11-differentiated DCs displayed enhanced expression of HLA class II antigens and dectin-1, and increased phagocytosis of Candida albicans. In addition, hLF1-11-differentiated DCs produced enhanced amounts of reactive oxygen species, IL-6 and IL-10, but not IL-12p40 and TNF-α, upon stimulation with C. albicans. Moreover, 6-day-cultured hLF1-11-differentiated DCs and control (peptide-incubated) DCs that had been stimulated with a Th17-inducing mix of antigens (including C. albicans) for 24 h were cocultured with autologous CD4+ T cells for 72 h and then the levels of IL-10, IL-17 and IFN-γ production and the percentage of cytokine-producing T cells were assessed. The results revealed that the hLF1-11-differentiated DCs induced an enhanced IL-17, but reduced IFN-γ, production by T cells as compared to control (peptide-incubated) DCs. Collectively, the hLF1-11 peptide drives monocyte-DC differentiation toward DCs that promote antifungal responses and enhance Th17 polarization