105 research outputs found

    Developing an ecologically relevant heterogeneous biofilm model for dental-unit waterlines

    Get PDF
    This study monitored the biodiversity of microbes cultured from a heterogeneous biofilm which had formed on the lumen of a section of dental waterline tubing over a period of 910 days. By day two bacterial counts on the outlet-water showed that contamination of the system had occurred. After 14 days, a biofilm comparable to that of clinical waterlines, consisting of bacteria, fungi and amoebae had formed. This showed that the proprietary silver coating applied to the lumenal surface of the commercial waterline tubing failed to prevent biofilm formation. Molecular barcoding of isolated culturable microorganisms showed some degree of the diversity of taxa in the biofilm, including the opportunistic pathogen Legionella pneumophila. Whilst the system used for isolation and identification of contaminating microorganisms may underestimate the diversity of organisms in the biofilm, their similarity to those found in the clinical environment makes this a promising test-bed for future biocide testing

    Difficulty Accessing Syringes Mediates the Relationship Between Methamphetamine Use and Syringe Sharing Among Young Injection Drug Users

    Get PDF
    Injection drug users (IDU) who use methamphetamine (MA) are at an increased risk of HIV infection due to engagement in injection-related risk behavior including syringe sharing. In this cohort study of young IDU aged 18-30, we investigated the relationship between injection MA use and syringe sharing, and whether difficulty accessing sterile syringes mediated this association. Behavioral questionnaires were completed by 384 IDU in Vancouver, Canada between October 2005 and May 2008. Generalized estimating equations were used to estimate direct and indirect effects. The median age of participants was 24 (IQR: 22–27) and 214 (55.7%) were male. Injecting MA was independently associated with syringe sharing. Mediation analyses revealed that difficulty accessing sterile syringes partially mediated the association between injecting MA and syringe sharing. Interventions to reduce syringe sharing among young methamphetamine injectors must address social and structural barriers to accessing HIV prevention programs

    Improving virtual screening of G protein-coupled receptors via ligand-directed modeling

    Get PDF
    G protein-coupled receptors (GPCRs) play crucial roles in cell physiology and pathophysiology. There is increasing interest in using structural information for virtual screening (VS) of libraries and for structure-based drug design to identify novel agonist or antagonist leads. However, the sparse availability of experimentally determined GPCR/ligand complex structures with diverse ligands impedes the application of structure-based drug design (SBDD) programs directed to identifying new molecules with a select pharmacology. In this study, we apply ligand-directed modeling (LDM) to available GPCR X-ray structures to improve VS performance and selectivity towards molecules of specific pharmacological profile. The described method refines a GPCR binding pocket conformation using a single known ligand for that GPCR. The LDM method is a computationally efficient, iterative workflow consisting of protein sampling and ligand docking. We developed an extensive benchmark comparing LDM-refined binding pockets to GPCR X-ray crystal structures across seven different GPCRs bound to a range of ligands of different chemotypes and pharmacological profiles. LDM-refined models showed improvement in VS performance over origin X-ray crystal structures in 21 out of 24 cases. In all cases, the LDM-refined models had superior performance in enriching for the chemotype of the refinement ligand. This likely contributes to the LDM success in all cases of inhibitor-bound to agonist-bound binding pocket refinement, a key task for GPCR SBDD programs. Indeed, agonist ligands are required for a plethora of GPCRs for therapeutic intervention, however GPCR X-ray structures are mostly restricted to their inactive inhibitor-bound state

    Low-dose tamoxifen treatment in juvenile males has long-term adverse effects on the reproductive system: implications for inducible transgenics

    Get PDF
    The tamoxifen-inducible Cre system is a popular transgenic method for controlling the induction of recombination by Cre at a specific time and in a specific cell type. However, tamoxifen is not an inert inducer of recombination, but an established endocrine disruptor with mixed agonist/antagonist activity acting via endogenous estrogen receptors. Such potentially confounding effects should be controlled for, but >40% of publications that have used tamoxifen to generate conditional knockouts have not reported even the minimum appropriate controls. To highlight the importance of this issue, the present study investigated the long-term impacts of different doses of a single systemic tamoxifen injection on the testis and the wider endocrine system. We found that a single dose of tamoxifen less than 10% of the mean dose used for recombination induction, caused adverse effects to the testis and to the reproductive endocrine system that persisted long-term. These data raise significant concerns about the widespread use of tamoxifen induction of recombination, and highlight the importance of including appropriate controls in all pathophysiological studies using this means of induction

    Sertoli cells maintain leydig cell number and peritubular myoid cell activity in the adult mouse testis

    Get PDF
    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health

    Cellular therapy of systemic lupus erythematosus

    No full text
    Immunoablation with autologous hematopoietic stem cell rescue has been used in over 1,300 autoimmune disease patients, around 150 with SLE. Some patients have experienced durable remissions with loss of autoantibodies, whereas others either did not respond or died as a result of the treatment. Prospective randomised trials are required and are being planned to establish the place for this potentailly curative strategy. Mesenchymal stem cells are in an exploratory phase for the treatment of acute autoimmune disease including SLE. The principle is that they home to inflammed tissue and exert an antiinflammatory paracrine effect
    corecore