157 research outputs found

    Flow through a circular tube with a permeable Navier slip boundary

    Get PDF
    For Newtonian fluid flow in a right circular tube, with a linear Navier slip boundary, we show that a second flow field arises which is different to conventional Poiseuille flow in the sense that the corresponding pressure is quadratic in its dependence on the length along the tube, rather than a linear dependence which applies for conventional Poiseuille flow. However, assuming that the quadratic pressure is determined, say from known experimental data, then the new solution only exists for a precisely prescribed permeability along the boundary. While this cannot occur for conventional pipe flow, for fluid flow through carbon nanotubes embedded in a porous matrix, it may well be an entirely realistic possibility, and could well explain some of the high flow rates which have been reported in the literature. Alternatively, if the radial boundary flow is prescribed, then the new flow field exists only for a given quadratic pressure. Our primary purpose here is to demonstrate the existence of a new pipe flow field for a permeable Navier slip boundary and to present a numerical solution and two approximate analytical solutions. The maximum flow rate possible for the new solution is precisely twice that for the conventional Poiseuille flow, which occurs for constant inward directed flow across the boundary

    Newtonian flow inside carbon nanotube with permeable boundary taking into account van der Waals forces

    Get PDF
    Here, water flow inside large radii semi-infinite carbon nanotubes is investigated. Permeable wall taking into account the molecular interactions between water and a nanotube, and the slip boundary condition will be considered. Furthermore, interactions among molecules are approximated by the continuum approximation. Incompressible and Newtonian fluid is assumed, and the Navier-Stokes equations, after certain assumptions, transformations and derivations, can be reduced into two first integral equations. In conjunction with the asymptotic expansion technique, we are able to derive the radial and axial velocities analytically, capturing the effect of the water leakage, where both mild and exceptionally large leakages will be considered. The radial velocity obeys the prescribed boundary condition at the (im)permeable wall. Through the mean of the radial forces, the sufficiently large leakages will enhance the radial velocity at the center of the tube. On the other hand, unlike the classical laminar flow, the axial velocity attains its maximum at the wall due to the coupling effect with the radial forces as water is being pushed into the proximity of the inner wall. In addition, the axial velocity and the flux with the consideration of the suck-in forces, induced by the tubes’ entry turn out to be one order higher than that without the suck-in forces. All the aforementioned considerations might partially resolve the mysteriously high water penetration through nanotubes. Axial velocity also drops with the tube’s length when the water leakage is permitted and the suck-in forces will ease the decline rate of the axial velocity. The present mathematical framework can be directly employed into the water flow inside other porous nano-materials, where large water leakage is permitted and therefore are of huge practical impact on ultra-filtration and environmental protection

    Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of τ Leptons in pp collisions at sqrt[s]=13  TeV

    Get PDF
    Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the τ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event, if any. The analysis is performed using proton-proton collision data collected with the CMS detector at the LHC at a center-of-mass energy of 13  TeV and corresponding to an integrated luminosity of 138  fb^{-1}. These are the first differential measurements of the Higgs boson cross section in the final state of two τ leptons. In final states with a large jet multiplicity or with a Lorentz-boosted Higgs boson, these measurements constitute a significant improvement over measurements performed in other final states

    Observation of triple J/ψ meson production in proton-proton collisions

    Get PDF
    Data availability: Tabulated results are provided in the HEPData record for this analysis71. Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in CMS data preservation, re-use and open access policy.Code availability: The CMS core software is publically available at https://github.com/cms-sw/cmssw.Copyright . Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be 272+141−104(stat)±17(syst)fb, and compared it to theoretical expectations for triple-J/ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process.SCOAP3.Change history: 27 February 2023A Correction to this paper has been published: https://doi.org/10.1038/s41567-023-01992-
    • 

    corecore